lykeven commited on
Commit
6accf0d
·
1 Parent(s): 8d00201

add grounding

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *model filter=lfs diff=lfs merge=lfs -text
app.py CHANGED
@@ -9,7 +9,10 @@ import time
9
 
10
  DESCRIPTION = '''# <a href="https://github.com/THUDM/CogVLM">VisualGLM</a>'''
11
 
12
- MAINTENANCE_NOTICE1 = 'Hint 1: If the app report "Something went wrong, connection error out", please turn off your proxy and retry.\nHint 2: If you upload a large size of image like 10MB, it may take some time to upload and process. Please be patient and wait.'
 
 
 
13
 
14
  NOTES = 'This app is adapted from <a href="https://github.com/THUDM/CogVLM">https://github.com/THUDM/CogVLM</a>. It would be recommended to check out the repo if you want to see the detail of our model.'
15
 
@@ -17,6 +20,7 @@ import json
17
  import requests
18
  import base64
19
  import hashlib
 
20
 
21
  default_chatbox = [("", "Hi, What do you want to know about this image?")]
22
 
@@ -45,6 +49,7 @@ def process_image_without_resize(image_prompt):
45
  timestamp = int(time.time())
46
  file_ext = os.path.splitext(image_prompt)[1]
47
  filename = f"examples/{timestamp}{file_ext}"
 
48
  image.save(filename)
49
  print(f"temporal filename {filename}")
50
  with open(filename, "rb") as image_file:
@@ -52,7 +57,7 @@ def process_image_without_resize(image_prompt):
52
  encoded_img = str(bytes, encoding='utf-8')
53
  image_hash = hashlib.sha256(bytes).hexdigest()
54
  os.remove(filename)
55
- return encoded_img, image_hash
56
 
57
 
58
  def is_chinese(text):
@@ -66,11 +71,12 @@ def post(
66
  top_p,
67
  image_prompt,
68
  result_previous,
69
- hidden_image
 
70
  ):
71
  result_text = [(ele[0], ele[1]) for ele in result_previous]
72
  for i in range(len(result_text)-1, -1, -1):
73
- if result_text[i][0] == "":
74
  del result_text[i]
75
  print(f"history {result_text}")
76
 
@@ -93,7 +99,7 @@ def post(
93
  "User-Agent": "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.87 Safari/537.36",
94
  }
95
  if image_prompt:
96
- encoded_img, image_hash = process_image_without_resize(image_prompt)
97
  print(f"image_hash:{image_hash}, hidden_image_hash:{hidden_image}")
98
 
99
  if hidden_image is not None and image_hash != hidden_image:
@@ -103,13 +109,14 @@ def post(
103
  else:
104
  encoded_img = None
105
 
106
- print('开始请求...')
107
  data = json.dumps({
108
  'text': input_text,
109
  'image': encoded_img,
110
  'temperature': temperature,
111
  'top_p': top_p,
112
- 'history': result_text
 
113
  })
114
  try:
115
  response = requests.request("POST", URL, headers=headers, data=data, timeout=(60, 100)).json()
@@ -120,11 +127,17 @@ def post(
120
  else:
121
  result_text.append((input_text, 'Timeout! Please wait a few minutes and retry.'))
122
  return "", result_text, hidden_image
123
- print('请求完毕...')
124
  # response = {'result':input_text}
125
 
126
  answer = str(response['result'])
127
- result_text.append((input_text, answer))
 
 
 
 
 
 
128
  print(result_text)
129
  print('finished')
130
  return "", result_text, hidden_image
@@ -157,15 +170,14 @@ def main():
157
  clear_button = gr.Button('Clear')
158
 
159
  image_prompt = gr.Image(type="filepath", label="Image Prompt", value=None)
 
 
 
 
 
160
  with gr.Row():
161
  temperature = gr.Slider(maximum=1, value=0.8, minimum=0, label='Temperature')
162
  top_p = gr.Slider(maximum=1, value=0.4, minimum=0, label='Top P')
163
- with gr.Group():
164
- with gr.Row():
165
- with gr.Column(scale=7):
166
- maintenance_notice = gr.Markdown(MAINTENANCE_NOTICE1)
167
- with gr.Column(scale=2):
168
- change_button = gr.Button('Change hint to English', visible=False)
169
  with gr.Column(scale=5.5):
170
  result_text = gr.components.Chatbot(label='Multi-round conversation History', value=[("", "Hi, What do you want to know about this image?")]).style(height=550)
171
  hidden_image_hash = gr.Textbox(visible=False)
@@ -173,14 +185,15 @@ def main():
173
  gr_examples = gr.Examples(examples=[[example["text"], example["image"]] for example in examples],
174
  inputs=[input_text, image_prompt],
175
  label="Example Inputs (Click to insert an examplet into the input box)",
176
- examples_per_page=3)
177
 
 
178
  gr.Markdown(NOTES)
179
 
180
  print(gr.__version__)
181
- run_button.click(fn=post,inputs=[input_text, temperature, top_p, image_prompt, result_text, hidden_image_hash],
182
  outputs=[input_text, result_text, hidden_image_hash])
183
- input_text.submit(fn=post,inputs=[input_text, temperature, top_p, image_prompt, result_text, hidden_image_hash],
184
  outputs=[input_text, result_text, hidden_image_hash])
185
  clear_button.click(fn=clear_fn, inputs=clear_button, outputs=[input_text, result_text, image_prompt])
186
  image_prompt.upload(fn=clear_fn2, inputs=clear_button, outputs=[result_text])
 
9
 
10
  DESCRIPTION = '''# <a href="https://github.com/THUDM/CogVLM">VisualGLM</a>'''
11
 
12
+ MAINTENANCE_NOTICE1 = 'Hint 1: If the app report "Something went wrong, connection error out", please turn off your proxy and retry.<br>Hint 2: If you upload a large size of image like 10MB, it may take some time to upload and process. Please be patient and wait.'
13
+
14
+ GROUNDING_NOTICE = 'Hint: When you check "Grounding", please use the <a href="https://github.com/THUDM/CogVLM/blob/main/utils/template.py#L344">corresponding prompt</a> or the examples below.'
15
+
16
 
17
  NOTES = 'This app is adapted from <a href="https://github.com/THUDM/CogVLM">https://github.com/THUDM/CogVLM</a>. It would be recommended to check out the repo if you want to see the detail of our model.'
18
 
 
20
  import requests
21
  import base64
22
  import hashlib
23
+ from utils import parse_response
24
 
25
  default_chatbox = [("", "Hi, What do you want to know about this image?")]
26
 
 
49
  timestamp = int(time.time())
50
  file_ext = os.path.splitext(image_prompt)[1]
51
  filename = f"examples/{timestamp}{file_ext}"
52
+ filename_grounding = f"examples/{timestamp}_grounding{file_ext}"
53
  image.save(filename)
54
  print(f"temporal filename {filename}")
55
  with open(filename, "rb") as image_file:
 
57
  encoded_img = str(bytes, encoding='utf-8')
58
  image_hash = hashlib.sha256(bytes).hexdigest()
59
  os.remove(filename)
60
+ return image, encoded_img, image_hash, filename_grounding
61
 
62
 
63
  def is_chinese(text):
 
71
  top_p,
72
  image_prompt,
73
  result_previous,
74
+ hidden_image,
75
+ grounding
76
  ):
77
  result_text = [(ele[0], ele[1]) for ele in result_previous]
78
  for i in range(len(result_text)-1, -1, -1):
79
+ if result_text[i][0] == "" or result_text[i][0] == None:
80
  del result_text[i]
81
  print(f"history {result_text}")
82
 
 
99
  "User-Agent": "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.87 Safari/537.36",
100
  }
101
  if image_prompt:
102
+ pil_img, encoded_img, image_hash, image_path_grounding = process_image_without_resize(image_prompt)
103
  print(f"image_hash:{image_hash}, hidden_image_hash:{hidden_image}")
104
 
105
  if hidden_image is not None and image_hash != hidden_image:
 
109
  else:
110
  encoded_img = None
111
 
112
+ print('request chat model...' if not grounding else 'request grounding model...')
113
  data = json.dumps({
114
  'text': input_text,
115
  'image': encoded_img,
116
  'temperature': temperature,
117
  'top_p': top_p,
118
+ 'history': result_text,
119
+ 'is_grounding': grounding
120
  })
121
  try:
122
  response = requests.request("POST", URL, headers=headers, data=data, timeout=(60, 100)).json()
 
127
  else:
128
  result_text.append((input_text, 'Timeout! Please wait a few minutes and retry.'))
129
  return "", result_text, hidden_image
130
+ print('request done...')
131
  # response = {'result':input_text}
132
 
133
  answer = str(response['result'])
134
+ if grounding:
135
+ parse_response(pil_img, answer, image_path_grounding)
136
+ new_answer = answer.replace(input_text, "")
137
+ result_text.append((input_text, new_answer))
138
+ result_text.append((None, (image_path_grounding,)))
139
+ else:
140
+ result_text.append((input_text, answer))
141
  print(result_text)
142
  print('finished')
143
  return "", result_text, hidden_image
 
170
  clear_button = gr.Button('Clear')
171
 
172
  image_prompt = gr.Image(type="filepath", label="Image Prompt", value=None)
173
+ with gr.Row():
174
+ grounding = gr.Checkbox(label="Grounding")
175
+ with gr.Row():
176
+ grounding_notice = gr.Markdown(GROUNDING_NOTICE)
177
+
178
  with gr.Row():
179
  temperature = gr.Slider(maximum=1, value=0.8, minimum=0, label='Temperature')
180
  top_p = gr.Slider(maximum=1, value=0.4, minimum=0, label='Top P')
 
 
 
 
 
 
181
  with gr.Column(scale=5.5):
182
  result_text = gr.components.Chatbot(label='Multi-round conversation History', value=[("", "Hi, What do you want to know about this image?")]).style(height=550)
183
  hidden_image_hash = gr.Textbox(visible=False)
 
185
  gr_examples = gr.Examples(examples=[[example["text"], example["image"]] for example in examples],
186
  inputs=[input_text, image_prompt],
187
  label="Example Inputs (Click to insert an examplet into the input box)",
188
+ examples_per_page=6)
189
 
190
+ gr.Markdown(MAINTENANCE_NOTICE1)
191
  gr.Markdown(NOTES)
192
 
193
  print(gr.__version__)
194
+ run_button.click(fn=post,inputs=[input_text, temperature, top_p, image_prompt, result_text, hidden_image_hash, grounding],
195
  outputs=[input_text, result_text, hidden_image_hash])
196
+ input_text.submit(fn=post,inputs=[input_text, temperature, top_p, image_prompt, result_text, hidden_image_hash, grounding],
197
  outputs=[input_text, result_text, hidden_image_hash])
198
  clear_button.click(fn=clear_fn, inputs=clear_button, outputs=[input_text, result_text, image_prompt])
199
  image_prompt.upload(fn=clear_fn2, inputs=clear_button, outputs=[result_text])
en_core_web_sm-3.6.0/LICENSE ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright 2021 ExplosionAI GmbH
2
+
3
+ Permission is hereby granted, free of charge, to any person obtaining a copy of
4
+ this software and associated documentation files (the "Software"), to deal in
5
+ the Software without restriction, including without limitation the rights to
6
+ use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
7
+ of the Software, and to permit persons to whom the Software is furnished to do
8
+ so, subject to the following conditions:
9
+
10
+ The above copyright notice and this permission notice shall be included in all
11
+ copies or substantial portions of the Software.
12
+
13
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
19
+ SOFTWARE.
en_core_web_sm-3.6.0/LICENSES_SOURCES ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # OntoNotes 5
2
+
3
+ * Author: Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston
4
+ * URL: https://catalog.ldc.upenn.edu/LDC2013T19
5
+ * License: commercial (licensed by Explosion)
6
+
7
+ ```
8
+ ```
9
+
10
+
11
+
12
+
13
+ # ClearNLP Constituent-to-Dependency Conversion
14
+
15
+ * Author: Emory University
16
+ * URL: https://github.com/clir/clearnlp-guidelines/blob/master/md/components/dependency_conversion.md
17
+ * License: Citation provided for reference, no code packaged with model
18
+
19
+ ```
20
+ ```
21
+
22
+
23
+
24
+
25
+ # WordNet 3.0
26
+
27
+ * Author: Princeton University
28
+ * URL: https://wordnet.princeton.edu/
29
+ * License: WordNet 3.0 License
30
+
31
+ ```
32
+ WordNet Release 3.0
33
+
34
+ This software and database is being provided to you, the LICENSEE, by
35
+ Princeton University under the following license. By obtaining, using
36
+ and/or copying this software and database, you agree that you have
37
+ read, understood, and will comply with these terms and conditions.:
38
+
39
+ Permission to use, copy, modify and distribute this software and
40
+ database and its documentation for any purpose and without fee or
41
+ royalty is hereby granted, provided that you agree to comply with
42
+ the following copyright notice and statements, including the disclaimer,
43
+ and that the same appear on ALL copies of the software, database and
44
+ documentation, including modifications that you make for internal
45
+ use or for distribution.
46
+
47
+ WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved.
48
+
49
+ THIS SOFTWARE AND DATABASE IS PROVIDED "AS IS" AND PRINCETON
50
+ UNIVERSITY MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
51
+ IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, PRINCETON
52
+ UNIVERSITY MAKES NO REPRESENTATIONS OR WARRANTIES OF MERCHANT-
53
+ ABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE
54
+ OF THE LICENSED SOFTWARE, DATABASE OR DOCUMENTATION WILL NOT
55
+ INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
56
+ OTHER RIGHTS.
57
+
58
+ The name of Princeton University or Princeton may not be used in
59
+ advertising or publicity pertaining to distribution of the software
60
+ and/or database. Title to copyright in this software, database and
61
+ any associated documentation shall at all times remain with
62
+ Princeton University and LICENSEE agrees to preserve same.```
63
+
64
+
65
+
66
+
en_core_web_sm-3.6.0/README.md ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Details: https://spacy.io/models/en#en_core_web_sm
2
+
3
+ English pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler, lemmatizer.
4
+
5
+ | Feature | Description |
6
+ | --- | --- |
7
+ | **Name** | `en_core_web_sm` |
8
+ | **Version** | `3.6.0` |
9
+ | **spaCy** | `>=3.6.0,<3.7.0` |
10
+ | **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` |
11
+ | **Components** | `tok2vec`, `tagger`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` |
12
+ | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
13
+ | **Sources** | [OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19) (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)<br />[ClearNLP Constituent-to-Dependency Conversion](https://github.com/clir/clearnlp-guidelines/blob/master/md/components/dependency_conversion.md) (Emory University)<br />[WordNet 3.0](https://wordnet.princeton.edu/) (Princeton University) |
14
+ | **License** | `MIT` |
15
+ | **Author** | [Explosion](https://explosion.ai) |
16
+
17
+ ### Label Scheme
18
+
19
+ <details>
20
+
21
+ <summary>View label scheme (113 labels for 3 components)</summary>
22
+
23
+ | Component | Labels |
24
+ | --- | --- |
25
+ | **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, `_SP`, ```` |
26
+ | **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `agent`, `amod`, `appos`, `attr`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `csubj`, `csubjpass`, `dative`, `dep`, `det`, `dobj`, `expl`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nsubj`, `nsubjpass`, `nummod`, `oprd`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` |
27
+ | **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` |
28
+
29
+ </details>
30
+
31
+ ### Accuracy
32
+
33
+ | Type | Score |
34
+ | --- | --- |
35
+ | `TOKEN_ACC` | 99.86 |
36
+ | `TOKEN_P` | 99.57 |
37
+ | `TOKEN_R` | 99.58 |
38
+ | `TOKEN_F` | 99.57 |
39
+ | `TAG_ACC` | 97.25 |
40
+ | `SENTS_P` | 92.02 |
41
+ | `SENTS_R` | 89.21 |
42
+ | `SENTS_F` | 90.59 |
43
+ | `DEP_UAS` | 91.75 |
44
+ | `DEP_LAS` | 89.87 |
45
+ | `ENTS_P` | 84.55 |
46
+ | `ENTS_R` | 84.57 |
47
+ | `ENTS_F` | 84.56 |
en_core_web_sm-3.6.0/accuracy.json ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "token_acc": 0.9986194413,
3
+ "token_p": 0.9956819193,
4
+ "token_r": 0.9957659295,
5
+ "token_f": 0.9957239226,
6
+ "tag_acc": 0.97246532,
7
+ "sents_p": 0.9201877934,
8
+ "sents_r": 0.8921432812,
9
+ "sents_f": 0.9059485531,
10
+ "dep_uas": 0.9175304332,
11
+ "dep_las": 0.89874821,
12
+ "dep_las_per_type": {
13
+ "prep": {
14
+ "p": 0.853521338,
15
+ "r": 0.8635932461,
16
+ "f": 0.8585277532
17
+ },
18
+ "det": {
19
+ "p": 0.9763930156,
20
+ "r": 0.9781048683,
21
+ "f": 0.9772481923
22
+ },
23
+ "pobj": {
24
+ "p": 0.9613764045,
25
+ "r": 0.967681131,
26
+ "f": 0.9645184649
27
+ },
28
+ "nsubj": {
29
+ "p": 0.9565737052,
30
+ "r": 0.9467250821,
31
+ "f": 0.9516239128
32
+ },
33
+ "aux": {
34
+ "p": 0.9815061794,
35
+ "r": 0.9827294578,
36
+ "f": 0.9821174377
37
+ },
38
+ "advmod": {
39
+ "p": 0.8548033091,
40
+ "r": 0.8519266364,
41
+ "f": 0.8533625485
42
+ },
43
+ "relcl": {
44
+ "p": 0.7571736011,
45
+ "r": 0.7659651669,
46
+ "f": 0.7615440115
47
+ },
48
+ "root": {
49
+ "p": 0.9195942266,
50
+ "r": 0.8910218352,
51
+ "f": 0.9050825879
52
+ },
53
+ "xcomp": {
54
+ "p": 0.8836222144,
55
+ "r": 0.8966259871,
56
+ "f": 0.8900766079
57
+ },
58
+ "amod": {
59
+ "p": 0.9174389766,
60
+ "r": 0.9107223842,
61
+ "f": 0.9140683422
62
+ },
63
+ "compound": {
64
+ "p": 0.9126489559,
65
+ "r": 0.9298284696,
66
+ "f": 0.9211586207
67
+ },
68
+ "poss": {
69
+ "p": 0.9739583333,
70
+ "r": 0.9786634461,
71
+ "f": 0.9763052209
72
+ },
73
+ "ccomp": {
74
+ "p": 0.7671207315,
75
+ "r": 0.8372708758,
76
+ "f": 0.8006621872
77
+ },
78
+ "attr": {
79
+ "p": 0.899837794,
80
+ "r": 0.93313709,
81
+ "f": 0.9161849711
82
+ },
83
+ "case": {
84
+ "p": 0.9787549407,
85
+ "r": 0.9914914915,
86
+ "f": 0.9850820487
87
+ },
88
+ "mark": {
89
+ "p": 0.9068783069,
90
+ "r": 0.9083200848,
91
+ "f": 0.9075986232
92
+ },
93
+ "intj": {
94
+ "p": 0.6717131474,
95
+ "r": 0.6175824176,
96
+ "f": 0.6435114504
97
+ },
98
+ "advcl": {
99
+ "p": 0.6633986928,
100
+ "r": 0.6645681189,
101
+ "f": 0.6639828909
102
+ },
103
+ "cc": {
104
+ "p": 0.8323511726,
105
+ "r": 0.8277717976,
106
+ "f": 0.8300551691
107
+ },
108
+ "neg": {
109
+ "p": 0.9466865969,
110
+ "r": 0.9533366784,
111
+ "f": 0.95
112
+ },
113
+ "conj": {
114
+ "p": 0.7567333828,
115
+ "r": 0.7710221551,
116
+ "f": 0.763810949
117
+ },
118
+ "nsubjpass": {
119
+ "p": 0.9182939363,
120
+ "r": 0.9164102564,
121
+ "f": 0.9173511294
122
+ },
123
+ "auxpass": {
124
+ "p": 0.9501335708,
125
+ "r": 0.9722095672,
126
+ "f": 0.9610448097
127
+ },
128
+ "dobj": {
129
+ "p": 0.9229805886,
130
+ "r": 0.9396764682,
131
+ "f": 0.9312537019
132
+ },
133
+ "nummod": {
134
+ "p": 0.9379292801,
135
+ "r": 0.9310606061,
136
+ "f": 0.9344823216
137
+ },
138
+ "npadvmod": {
139
+ "p": 0.7629658087,
140
+ "r": 0.7055062167,
141
+ "f": 0.7331118494
142
+ },
143
+ "prt": {
144
+ "p": 0.8118323747,
145
+ "r": 0.8853046595,
146
+ "f": 0.8469781397
147
+ },
148
+ "pcomp": {
149
+ "p": 0.8835714286,
150
+ "r": 0.8662464986,
151
+ "f": 0.8748231966
152
+ },
153
+ "expl": {
154
+ "p": 0.9851380042,
155
+ "r": 0.9935760171,
156
+ "f": 0.9893390192
157
+ },
158
+ "acl": {
159
+ "p": 0.742010459,
160
+ "r": 0.6966721222,
161
+ "f": 0.7186268993
162
+ },
163
+ "agent": {
164
+ "p": 0.9034482759,
165
+ "r": 0.9390681004,
166
+ "f": 0.920913884
167
+ },
168
+ "dative": {
169
+ "p": 0.8,
170
+ "r": 0.6972477064,
171
+ "f": 0.7450980392
172
+ },
173
+ "acomp": {
174
+ "p": 0.9020594966,
175
+ "r": 0.893877551,
176
+ "f": 0.8979498861
177
+ },
178
+ "dep": {
179
+ "p": 0.4147286822,
180
+ "r": 0.1737012987,
181
+ "f": 0.2448512586
182
+ },
183
+ "csubj": {
184
+ "p": 0.6983240223,
185
+ "r": 0.7396449704,
186
+ "f": 0.7183908046
187
+ },
188
+ "quantmod": {
189
+ "p": 0.8727436823,
190
+ "r": 0.7855402112,
191
+ "f": 0.8268490808
192
+ },
193
+ "nmod": {
194
+ "p": 0.7498033045,
195
+ "r": 0.5807434491,
196
+ "f": 0.654532967
197
+ },
198
+ "appos": {
199
+ "p": 0.7048498845,
200
+ "r": 0.6620390456,
201
+ "f": 0.6827740492
202
+ },
203
+ "predet": {
204
+ "p": 0.8299595142,
205
+ "r": 0.8798283262,
206
+ "f": 0.8541666667
207
+ },
208
+ "preconj": {
209
+ "p": 0.5544554455,
210
+ "r": 0.6511627907,
211
+ "f": 0.5989304813
212
+ },
213
+ "oprd": {
214
+ "p": 0.8013245033,
215
+ "r": 0.7223880597,
216
+ "f": 0.759811617
217
+ },
218
+ "parataxis": {
219
+ "p": 0.6428571429,
220
+ "r": 0.4880694143,
221
+ "f": 0.5548705302
222
+ },
223
+ "meta": {
224
+ "p": 0.3770491803,
225
+ "r": 0.4423076923,
226
+ "f": 0.407079646
227
+ },
228
+ "csubjpass": {
229
+ "p": 0.5555555556,
230
+ "r": 0.8333333333,
231
+ "f": 0.6666666667
232
+ }
233
+ },
234
+ "ents_p": 0.8454836771,
235
+ "ents_r": 0.8456530449,
236
+ "ents_f": 0.8455683525,
237
+ "ents_per_type": {
238
+ "DATE": {
239
+ "p": 0.8603213844,
240
+ "r": 0.8838095238,
241
+ "f": 0.8719072972
242
+ },
243
+ "GPE": {
244
+ "p": 0.9146932953,
245
+ "r": 0.8942817294,
246
+ "f": 0.9043723554
247
+ },
248
+ "ORG": {
249
+ "p": 0.7955942623,
250
+ "r": 0.8234358431,
251
+ "f": 0.8092756644
252
+ },
253
+ "CARDINAL": {
254
+ "p": 0.8149171271,
255
+ "r": 0.8769322235,
256
+ "f": 0.8447880871
257
+ },
258
+ "PERSON": {
259
+ "p": 0.8617758186,
260
+ "r": 0.8932767624,
261
+ "f": 0.8772435897
262
+ },
263
+ "NORP": {
264
+ "p": 0.8957006369,
265
+ "r": 0.9,
266
+ "f": 0.8978451716
267
+ },
268
+ "ORDINAL": {
269
+ "p": 0.7844827586,
270
+ "r": 0.847826087,
271
+ "f": 0.8149253731
272
+ },
273
+ "QUANTITY": {
274
+ "p": 0.8529411765,
275
+ "r": 0.6373626374,
276
+ "f": 0.7295597484
277
+ },
278
+ "LOC": {
279
+ "p": 0.7210884354,
280
+ "r": 0.6751592357,
281
+ "f": 0.6973684211
282
+ },
283
+ "FAC": {
284
+ "p": 0.358490566,
285
+ "r": 0.2923076923,
286
+ "f": 0.3220338983
287
+ },
288
+ "TIME": {
289
+ "p": 0.7413793103,
290
+ "r": 0.7543859649,
291
+ "f": 0.747826087
292
+ },
293
+ "PRODUCT": {
294
+ "p": 0.5591397849,
295
+ "r": 0.2464454976,
296
+ "f": 0.3421052632
297
+ },
298
+ "WORK_OF_ART": {
299
+ "p": 0.4885496183,
300
+ "r": 0.3298969072,
301
+ "f": 0.3938461538
302
+ },
303
+ "EVENT": {
304
+ "p": 0.6428571429,
305
+ "r": 0.3103448276,
306
+ "f": 0.4186046512
307
+ },
308
+ "MONEY": {
309
+ "p": 0.9071428571,
310
+ "r": 0.8996458087,
311
+ "f": 0.9033787789
312
+ },
313
+ "LAW": {
314
+ "p": 0.5454545455,
315
+ "r": 0.46875,
316
+ "f": 0.5042016807
317
+ },
318
+ "PERCENT": {
319
+ "p": 0.9184,
320
+ "r": 0.8790199081,
321
+ "f": 0.8982785603
322
+ },
323
+ "LANGUAGE": {
324
+ "p": 0.8,
325
+ "r": 0.625,
326
+ "f": 0.701754386
327
+ }
328
+ },
329
+ "speed": 8516.5316928954
330
+ }
en_core_web_sm-3.6.0/attribute_ruler/patterns ADDED
Binary file (14.8 kB). View file
 
en_core_web_sm-3.6.0/config.cfg ADDED
@@ -0,0 +1,268 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [paths]
2
+ train = null
3
+ dev = null
4
+ vectors = null
5
+ init_tok2vec = null
6
+
7
+ [system]
8
+ gpu_allocator = null
9
+ seed = 0
10
+
11
+ [nlp]
12
+ lang = "en"
13
+ pipeline = ["tok2vec","tagger","parser","senter","attribute_ruler","lemmatizer","ner"]
14
+ disabled = ["senter"]
15
+ before_creation = null
16
+ after_creation = null
17
+ after_pipeline_creation = null
18
+ batch_size = 256
19
+ tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
20
+
21
+ [components]
22
+
23
+ [components.attribute_ruler]
24
+ factory = "attribute_ruler"
25
+ scorer = {"@scorers":"spacy.attribute_ruler_scorer.v1"}
26
+ validate = false
27
+
28
+ [components.lemmatizer]
29
+ factory = "lemmatizer"
30
+ mode = "rule"
31
+ model = null
32
+ overwrite = false
33
+ scorer = {"@scorers":"spacy.lemmatizer_scorer.v1"}
34
+
35
+ [components.ner]
36
+ factory = "ner"
37
+ incorrect_spans_key = null
38
+ moves = null
39
+ scorer = {"@scorers":"spacy.ner_scorer.v1"}
40
+ update_with_oracle_cut_size = 100
41
+
42
+ [components.ner.model]
43
+ @architectures = "spacy.TransitionBasedParser.v2"
44
+ state_type = "ner"
45
+ extra_state_tokens = false
46
+ hidden_width = 64
47
+ maxout_pieces = 2
48
+ use_upper = true
49
+ nO = null
50
+
51
+ [components.ner.model.tok2vec]
52
+ @architectures = "spacy.Tok2Vec.v2"
53
+
54
+ [components.ner.model.tok2vec.embed]
55
+ @architectures = "spacy.MultiHashEmbed.v2"
56
+ width = 96
57
+ attrs = ["NORM","PREFIX","SUFFIX","SHAPE"]
58
+ rows = [5000,1000,2500,2500]
59
+ include_static_vectors = false
60
+
61
+ [components.ner.model.tok2vec.encode]
62
+ @architectures = "spacy.MaxoutWindowEncoder.v2"
63
+ width = 96
64
+ depth = 4
65
+ window_size = 1
66
+ maxout_pieces = 3
67
+
68
+ [components.parser]
69
+ factory = "parser"
70
+ learn_tokens = false
71
+ min_action_freq = 30
72
+ moves = null
73
+ scorer = {"@scorers":"spacy.parser_scorer.v1"}
74
+ update_with_oracle_cut_size = 100
75
+
76
+ [components.parser.model]
77
+ @architectures = "spacy.TransitionBasedParser.v2"
78
+ state_type = "parser"
79
+ extra_state_tokens = false
80
+ hidden_width = 64
81
+ maxout_pieces = 2
82
+ use_upper = true
83
+ nO = null
84
+
85
+ [components.parser.model.tok2vec]
86
+ @architectures = "spacy.Tok2VecListener.v1"
87
+ width = ${components.tok2vec.model.encode:width}
88
+ upstream = "tok2vec"
89
+
90
+ [components.senter]
91
+ factory = "senter"
92
+ overwrite = false
93
+ scorer = {"@scorers":"spacy.senter_scorer.v1"}
94
+
95
+ [components.senter.model]
96
+ @architectures = "spacy.Tagger.v2"
97
+ nO = null
98
+ normalize = false
99
+
100
+ [components.senter.model.tok2vec]
101
+ @architectures = "spacy.Tok2Vec.v2"
102
+
103
+ [components.senter.model.tok2vec.embed]
104
+ @architectures = "spacy.MultiHashEmbed.v2"
105
+ width = 16
106
+ attrs = ["NORM","PREFIX","SUFFIX","SHAPE","SPACY"]
107
+ rows = [1000,500,500,500,50]
108
+ include_static_vectors = false
109
+
110
+ [components.senter.model.tok2vec.encode]
111
+ @architectures = "spacy.MaxoutWindowEncoder.v2"
112
+ width = 16
113
+ depth = 2
114
+ window_size = 1
115
+ maxout_pieces = 2
116
+
117
+ [components.tagger]
118
+ factory = "tagger"
119
+ label_smoothing = 0.0
120
+ neg_prefix = "!"
121
+ overwrite = false
122
+ scorer = {"@scorers":"spacy.tagger_scorer.v1"}
123
+
124
+ [components.tagger.model]
125
+ @architectures = "spacy.Tagger.v2"
126
+ nO = null
127
+ normalize = false
128
+
129
+ [components.tagger.model.tok2vec]
130
+ @architectures = "spacy.Tok2VecListener.v1"
131
+ width = ${components.tok2vec.model.encode:width}
132
+ upstream = "tok2vec"
133
+
134
+ [components.tok2vec]
135
+ factory = "tok2vec"
136
+
137
+ [components.tok2vec.model]
138
+ @architectures = "spacy.Tok2Vec.v2"
139
+
140
+ [components.tok2vec.model.embed]
141
+ @architectures = "spacy.MultiHashEmbed.v2"
142
+ width = ${components.tok2vec.model.encode:width}
143
+ attrs = ["NORM","PREFIX","SUFFIX","SHAPE","SPACY","IS_SPACE"]
144
+ rows = [5000,1000,2500,2500,50,50]
145
+ include_static_vectors = false
146
+
147
+ [components.tok2vec.model.encode]
148
+ @architectures = "spacy.MaxoutWindowEncoder.v2"
149
+ width = 96
150
+ depth = 4
151
+ window_size = 1
152
+ maxout_pieces = 3
153
+
154
+ [corpora]
155
+
156
+ [corpora.dev]
157
+ @readers = "spacy.Corpus.v1"
158
+ path = ${paths.dev}
159
+ gold_preproc = false
160
+ max_length = 0
161
+ limit = 0
162
+ augmenter = null
163
+
164
+ [corpora.train]
165
+ @readers = "spacy.Corpus.v1"
166
+ path = ${paths.train}
167
+ gold_preproc = false
168
+ max_length = 0
169
+ limit = 0
170
+ augmenter = null
171
+
172
+ [training]
173
+ train_corpus = "corpora.train"
174
+ dev_corpus = "corpora.dev"
175
+ seed = ${system:seed}
176
+ gpu_allocator = ${system:gpu_allocator}
177
+ dropout = 0.1
178
+ accumulate_gradient = 1
179
+ patience = 5000
180
+ max_epochs = 0
181
+ max_steps = 100000
182
+ eval_frequency = 1000
183
+ frozen_components = []
184
+ before_to_disk = null
185
+ annotating_components = []
186
+ before_update = null
187
+
188
+ [training.batcher]
189
+ @batchers = "spacy.batch_by_words.v1"
190
+ discard_oversize = false
191
+ tolerance = 0.2
192
+ get_length = null
193
+
194
+ [training.batcher.size]
195
+ @schedules = "compounding.v1"
196
+ start = 100
197
+ stop = 1000
198
+ compound = 1.001
199
+ t = 0.0
200
+
201
+ [training.logger]
202
+ @loggers = "spacy.ConsoleLogger.v1"
203
+ progress_bar = false
204
+
205
+ [training.optimizer]
206
+ @optimizers = "Adam.v1"
207
+ beta1 = 0.9
208
+ beta2 = 0.999
209
+ L2_is_weight_decay = true
210
+ L2 = 0.01
211
+ grad_clip = 1.0
212
+ use_averages = true
213
+ eps = 0.00000001
214
+ learn_rate = 0.001
215
+
216
+ [training.score_weights]
217
+ tag_acc = 0.16
218
+ dep_uas = 0.0
219
+ dep_las = 0.16
220
+ dep_las_per_type = null
221
+ sents_p = null
222
+ sents_r = null
223
+ sents_f = 0.02
224
+ lemma_acc = 0.5
225
+ ents_f = 0.16
226
+ ents_p = 0.0
227
+ ents_r = 0.0
228
+ ents_per_type = null
229
+ speed = 0.0
230
+
231
+ [pretraining]
232
+
233
+ [initialize]
234
+ vocab_data = null
235
+ vectors = ${paths.vectors}
236
+ init_tok2vec = ${paths.init_tok2vec}
237
+ before_init = null
238
+ after_init = null
239
+
240
+ [initialize.components]
241
+
242
+ [initialize.components.ner]
243
+
244
+ [initialize.components.ner.labels]
245
+ @readers = "spacy.read_labels.v1"
246
+ path = "corpus/labels/ner.json"
247
+ require = false
248
+
249
+ [initialize.components.parser]
250
+
251
+ [initialize.components.parser.labels]
252
+ @readers = "spacy.read_labels.v1"
253
+ path = "corpus/labels/parser.json"
254
+ require = false
255
+
256
+ [initialize.components.tagger]
257
+
258
+ [initialize.components.tagger.labels]
259
+ @readers = "spacy.read_labels.v1"
260
+ path = "corpus/labels/tagger.json"
261
+ require = false
262
+
263
+ [initialize.lookups]
264
+ @misc = "spacy.LookupsDataLoader.v1"
265
+ lang = ${nlp.lang}
266
+ tables = ["lexeme_norm"]
267
+
268
+ [initialize.tokenizer]
en_core_web_sm-3.6.0/lemmatizer/lookups/lookups.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb64f40c0f8396d1762730c0ddf4dad2a52d138f5a389f71a1a1d088173b7737
3
+ size 972893
en_core_web_sm-3.6.0/meta.json ADDED
@@ -0,0 +1,521 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "lang":"en",
3
+ "name":"core_web_sm",
4
+ "version":"3.6.0",
5
+ "description":"English pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler, lemmatizer.",
6
+ "author":"Explosion",
7
+ "email":"[email protected]",
8
+ "url":"https://explosion.ai",
9
+ "license":"MIT",
10
+ "spacy_version":">=3.6.0,<3.7.0",
11
+ "spacy_git_version":"cb4fdc83e",
12
+ "vectors":{
13
+ "width":0,
14
+ "vectors":0,
15
+ "keys":0,
16
+ "name":null
17
+ },
18
+ "labels":{
19
+ "tok2vec":[
20
+
21
+ ],
22
+ "tagger":[
23
+ "$",
24
+ "''",
25
+ ",",
26
+ "-LRB-",
27
+ "-RRB-",
28
+ ".",
29
+ ":",
30
+ "ADD",
31
+ "AFX",
32
+ "CC",
33
+ "CD",
34
+ "DT",
35
+ "EX",
36
+ "FW",
37
+ "HYPH",
38
+ "IN",
39
+ "JJ",
40
+ "JJR",
41
+ "JJS",
42
+ "LS",
43
+ "MD",
44
+ "NFP",
45
+ "NN",
46
+ "NNP",
47
+ "NNPS",
48
+ "NNS",
49
+ "PDT",
50
+ "POS",
51
+ "PRP",
52
+ "PRP$",
53
+ "RB",
54
+ "RBR",
55
+ "RBS",
56
+ "RP",
57
+ "SYM",
58
+ "TO",
59
+ "UH",
60
+ "VB",
61
+ "VBD",
62
+ "VBG",
63
+ "VBN",
64
+ "VBP",
65
+ "VBZ",
66
+ "WDT",
67
+ "WP",
68
+ "WP$",
69
+ "WRB",
70
+ "XX",
71
+ "_SP",
72
+ "``"
73
+ ],
74
+ "parser":[
75
+ "ROOT",
76
+ "acl",
77
+ "acomp",
78
+ "advcl",
79
+ "advmod",
80
+ "agent",
81
+ "amod",
82
+ "appos",
83
+ "attr",
84
+ "aux",
85
+ "auxpass",
86
+ "case",
87
+ "cc",
88
+ "ccomp",
89
+ "compound",
90
+ "conj",
91
+ "csubj",
92
+ "csubjpass",
93
+ "dative",
94
+ "dep",
95
+ "det",
96
+ "dobj",
97
+ "expl",
98
+ "intj",
99
+ "mark",
100
+ "meta",
101
+ "neg",
102
+ "nmod",
103
+ "npadvmod",
104
+ "nsubj",
105
+ "nsubjpass",
106
+ "nummod",
107
+ "oprd",
108
+ "parataxis",
109
+ "pcomp",
110
+ "pobj",
111
+ "poss",
112
+ "preconj",
113
+ "predet",
114
+ "prep",
115
+ "prt",
116
+ "punct",
117
+ "quantmod",
118
+ "relcl",
119
+ "xcomp"
120
+ ],
121
+ "attribute_ruler":[
122
+
123
+ ],
124
+ "lemmatizer":[
125
+
126
+ ],
127
+ "ner":[
128
+ "CARDINAL",
129
+ "DATE",
130
+ "EVENT",
131
+ "FAC",
132
+ "GPE",
133
+ "LANGUAGE",
134
+ "LAW",
135
+ "LOC",
136
+ "MONEY",
137
+ "NORP",
138
+ "ORDINAL",
139
+ "ORG",
140
+ "PERCENT",
141
+ "PERSON",
142
+ "PRODUCT",
143
+ "QUANTITY",
144
+ "TIME",
145
+ "WORK_OF_ART"
146
+ ]
147
+ },
148
+ "pipeline":[
149
+ "tok2vec",
150
+ "tagger",
151
+ "parser",
152
+ "attribute_ruler",
153
+ "lemmatizer",
154
+ "ner"
155
+ ],
156
+ "components":[
157
+ "tok2vec",
158
+ "tagger",
159
+ "parser",
160
+ "senter",
161
+ "attribute_ruler",
162
+ "lemmatizer",
163
+ "ner"
164
+ ],
165
+ "disabled":[
166
+ "senter"
167
+ ],
168
+ "performance":{
169
+ "token_acc":0.9986194413,
170
+ "token_p":0.9956819193,
171
+ "token_r":0.9957659295,
172
+ "token_f":0.9957239226,
173
+ "tag_acc":0.97246532,
174
+ "sents_p":0.9201877934,
175
+ "sents_r":0.8921432812,
176
+ "sents_f":0.9059485531,
177
+ "dep_uas":0.9175304332,
178
+ "dep_las":0.89874821,
179
+ "dep_las_per_type":{
180
+ "prep":{
181
+ "p":0.853521338,
182
+ "r":0.8635932461,
183
+ "f":0.8585277532
184
+ },
185
+ "det":{
186
+ "p":0.9763930156,
187
+ "r":0.9781048683,
188
+ "f":0.9772481923
189
+ },
190
+ "pobj":{
191
+ "p":0.9613764045,
192
+ "r":0.967681131,
193
+ "f":0.9645184649
194
+ },
195
+ "nsubj":{
196
+ "p":0.9565737052,
197
+ "r":0.9467250821,
198
+ "f":0.9516239128
199
+ },
200
+ "aux":{
201
+ "p":0.9815061794,
202
+ "r":0.9827294578,
203
+ "f":0.9821174377
204
+ },
205
+ "advmod":{
206
+ "p":0.8548033091,
207
+ "r":0.8519266364,
208
+ "f":0.8533625485
209
+ },
210
+ "relcl":{
211
+ "p":0.7571736011,
212
+ "r":0.7659651669,
213
+ "f":0.7615440115
214
+ },
215
+ "root":{
216
+ "p":0.9195942266,
217
+ "r":0.8910218352,
218
+ "f":0.9050825879
219
+ },
220
+ "xcomp":{
221
+ "p":0.8836222144,
222
+ "r":0.8966259871,
223
+ "f":0.8900766079
224
+ },
225
+ "amod":{
226
+ "p":0.9174389766,
227
+ "r":0.9107223842,
228
+ "f":0.9140683422
229
+ },
230
+ "compound":{
231
+ "p":0.9126489559,
232
+ "r":0.9298284696,
233
+ "f":0.9211586207
234
+ },
235
+ "poss":{
236
+ "p":0.9739583333,
237
+ "r":0.9786634461,
238
+ "f":0.9763052209
239
+ },
240
+ "ccomp":{
241
+ "p":0.7671207315,
242
+ "r":0.8372708758,
243
+ "f":0.8006621872
244
+ },
245
+ "attr":{
246
+ "p":0.899837794,
247
+ "r":0.93313709,
248
+ "f":0.9161849711
249
+ },
250
+ "case":{
251
+ "p":0.9787549407,
252
+ "r":0.9914914915,
253
+ "f":0.9850820487
254
+ },
255
+ "mark":{
256
+ "p":0.9068783069,
257
+ "r":0.9083200848,
258
+ "f":0.9075986232
259
+ },
260
+ "intj":{
261
+ "p":0.6717131474,
262
+ "r":0.6175824176,
263
+ "f":0.6435114504
264
+ },
265
+ "advcl":{
266
+ "p":0.6633986928,
267
+ "r":0.6645681189,
268
+ "f":0.6639828909
269
+ },
270
+ "cc":{
271
+ "p":0.8323511726,
272
+ "r":0.8277717976,
273
+ "f":0.8300551691
274
+ },
275
+ "neg":{
276
+ "p":0.9466865969,
277
+ "r":0.9533366784,
278
+ "f":0.95
279
+ },
280
+ "conj":{
281
+ "p":0.7567333828,
282
+ "r":0.7710221551,
283
+ "f":0.763810949
284
+ },
285
+ "nsubjpass":{
286
+ "p":0.9182939363,
287
+ "r":0.9164102564,
288
+ "f":0.9173511294
289
+ },
290
+ "auxpass":{
291
+ "p":0.9501335708,
292
+ "r":0.9722095672,
293
+ "f":0.9610448097
294
+ },
295
+ "dobj":{
296
+ "p":0.9229805886,
297
+ "r":0.9396764682,
298
+ "f":0.9312537019
299
+ },
300
+ "nummod":{
301
+ "p":0.9379292801,
302
+ "r":0.9310606061,
303
+ "f":0.9344823216
304
+ },
305
+ "npadvmod":{
306
+ "p":0.7629658087,
307
+ "r":0.7055062167,
308
+ "f":0.7331118494
309
+ },
310
+ "prt":{
311
+ "p":0.8118323747,
312
+ "r":0.8853046595,
313
+ "f":0.8469781397
314
+ },
315
+ "pcomp":{
316
+ "p":0.8835714286,
317
+ "r":0.8662464986,
318
+ "f":0.8748231966
319
+ },
320
+ "expl":{
321
+ "p":0.9851380042,
322
+ "r":0.9935760171,
323
+ "f":0.9893390192
324
+ },
325
+ "acl":{
326
+ "p":0.742010459,
327
+ "r":0.6966721222,
328
+ "f":0.7186268993
329
+ },
330
+ "agent":{
331
+ "p":0.9034482759,
332
+ "r":0.9390681004,
333
+ "f":0.920913884
334
+ },
335
+ "dative":{
336
+ "p":0.8,
337
+ "r":0.6972477064,
338
+ "f":0.7450980392
339
+ },
340
+ "acomp":{
341
+ "p":0.9020594966,
342
+ "r":0.893877551,
343
+ "f":0.8979498861
344
+ },
345
+ "dep":{
346
+ "p":0.4147286822,
347
+ "r":0.1737012987,
348
+ "f":0.2448512586
349
+ },
350
+ "csubj":{
351
+ "p":0.6983240223,
352
+ "r":0.7396449704,
353
+ "f":0.7183908046
354
+ },
355
+ "quantmod":{
356
+ "p":0.8727436823,
357
+ "r":0.7855402112,
358
+ "f":0.8268490808
359
+ },
360
+ "nmod":{
361
+ "p":0.7498033045,
362
+ "r":0.5807434491,
363
+ "f":0.654532967
364
+ },
365
+ "appos":{
366
+ "p":0.7048498845,
367
+ "r":0.6620390456,
368
+ "f":0.6827740492
369
+ },
370
+ "predet":{
371
+ "p":0.8299595142,
372
+ "r":0.8798283262,
373
+ "f":0.8541666667
374
+ },
375
+ "preconj":{
376
+ "p":0.5544554455,
377
+ "r":0.6511627907,
378
+ "f":0.5989304813
379
+ },
380
+ "oprd":{
381
+ "p":0.8013245033,
382
+ "r":0.7223880597,
383
+ "f":0.759811617
384
+ },
385
+ "parataxis":{
386
+ "p":0.6428571429,
387
+ "r":0.4880694143,
388
+ "f":0.5548705302
389
+ },
390
+ "meta":{
391
+ "p":0.3770491803,
392
+ "r":0.4423076923,
393
+ "f":0.407079646
394
+ },
395
+ "csubjpass":{
396
+ "p":0.5555555556,
397
+ "r":0.8333333333,
398
+ "f":0.6666666667
399
+ }
400
+ },
401
+ "ents_p":0.8454836771,
402
+ "ents_r":0.8456530449,
403
+ "ents_f":0.8455683525,
404
+ "ents_per_type":{
405
+ "DATE":{
406
+ "p":0.8603213844,
407
+ "r":0.8838095238,
408
+ "f":0.8719072972
409
+ },
410
+ "GPE":{
411
+ "p":0.9146932953,
412
+ "r":0.8942817294,
413
+ "f":0.9043723554
414
+ },
415
+ "ORG":{
416
+ "p":0.7955942623,
417
+ "r":0.8234358431,
418
+ "f":0.8092756644
419
+ },
420
+ "CARDINAL":{
421
+ "p":0.8149171271,
422
+ "r":0.8769322235,
423
+ "f":0.8447880871
424
+ },
425
+ "PERSON":{
426
+ "p":0.8617758186,
427
+ "r":0.8932767624,
428
+ "f":0.8772435897
429
+ },
430
+ "NORP":{
431
+ "p":0.8957006369,
432
+ "r":0.9,
433
+ "f":0.8978451716
434
+ },
435
+ "ORDINAL":{
436
+ "p":0.7844827586,
437
+ "r":0.847826087,
438
+ "f":0.8149253731
439
+ },
440
+ "QUANTITY":{
441
+ "p":0.8529411765,
442
+ "r":0.6373626374,
443
+ "f":0.7295597484
444
+ },
445
+ "LOC":{
446
+ "p":0.7210884354,
447
+ "r":0.6751592357,
448
+ "f":0.6973684211
449
+ },
450
+ "FAC":{
451
+ "p":0.358490566,
452
+ "r":0.2923076923,
453
+ "f":0.3220338983
454
+ },
455
+ "TIME":{
456
+ "p":0.7413793103,
457
+ "r":0.7543859649,
458
+ "f":0.747826087
459
+ },
460
+ "PRODUCT":{
461
+ "p":0.5591397849,
462
+ "r":0.2464454976,
463
+ "f":0.3421052632
464
+ },
465
+ "WORK_OF_ART":{
466
+ "p":0.4885496183,
467
+ "r":0.3298969072,
468
+ "f":0.3938461538
469
+ },
470
+ "EVENT":{
471
+ "p":0.6428571429,
472
+ "r":0.3103448276,
473
+ "f":0.4186046512
474
+ },
475
+ "MONEY":{
476
+ "p":0.9071428571,
477
+ "r":0.8996458087,
478
+ "f":0.9033787789
479
+ },
480
+ "LAW":{
481
+ "p":0.5454545455,
482
+ "r":0.46875,
483
+ "f":0.5042016807
484
+ },
485
+ "PERCENT":{
486
+ "p":0.9184,
487
+ "r":0.8790199081,
488
+ "f":0.8982785603
489
+ },
490
+ "LANGUAGE":{
491
+ "p":0.8,
492
+ "r":0.625,
493
+ "f":0.701754386
494
+ }
495
+ },
496
+ "speed":8516.5316928954
497
+ },
498
+ "sources":[
499
+ {
500
+ "name":"OntoNotes 5",
501
+ "url":"https://catalog.ldc.upenn.edu/LDC2013T19",
502
+ "license":"commercial (licensed by Explosion)",
503
+ "author":"Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston"
504
+ },
505
+ {
506
+ "name":"ClearNLP Constituent-to-Dependency Conversion",
507
+ "url":"https://github.com/clir/clearnlp-guidelines/blob/master/md/components/dependency_conversion.md",
508
+ "license":"Citation provided for reference, no code packaged with model",
509
+ "author":"Emory University"
510
+ },
511
+ {
512
+ "name":"WordNet 3.0",
513
+ "url":"https://wordnet.princeton.edu/",
514
+ "author":"Princeton University",
515
+ "license":"WordNet 3.0 License"
516
+ }
517
+ ],
518
+ "requirements":[
519
+
520
+ ]
521
+ }
en_core_web_sm-3.6.0/ner/cfg ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "moves":null,
3
+ "update_with_oracle_cut_size":100,
4
+ "multitasks":[
5
+
6
+ ],
7
+ "min_action_freq":1,
8
+ "learn_tokens":false,
9
+ "beam_width":1,
10
+ "beam_density":0.0,
11
+ "beam_update_prob":0.0,
12
+ "incorrect_spans_key":null
13
+ }
en_core_web_sm-3.6.0/ner/model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f47ca062eb419c8ffb7d3023e6fbc4b2eb21dab14c5d49aa5e5586228b87405
3
+ size 6154601
en_core_web_sm-3.6.0/ner/moves ADDED
@@ -0,0 +1 @@
 
 
1
+ ��moves�{"0":{},"1":{"ORG":56516,"DATE":40493,"PERSON":36534,"GPE":26745,"MONEY":15158,"CARDINAL":14109,"NORP":9641,"PERCENT":9199,"WORK_OF_ART":4488,"LOC":4055,"TIME":3678,"QUANTITY":3123,"FAC":3046,"EVENT":3021,"ORDINAL":2142,"PRODUCT":1787,"LAW":1624,"LANGUAGE":355},"2":{"ORG":56516,"DATE":40493,"PERSON":36534,"GPE":26745,"MONEY":15158,"CARDINAL":14109,"NORP":9641,"PERCENT":9199,"WORK_OF_ART":4488,"LOC":4055,"TIME":3678,"QUANTITY":3123,"FAC":3046,"EVENT":3021,"ORDINAL":2142,"PRODUCT":1787,"LAW":1624,"LANGUAGE":355},"3":{"ORG":56516,"DATE":40493,"PERSON":36534,"GPE":26745,"MONEY":15158,"CARDINAL":14109,"NORP":9641,"PERCENT":9199,"WORK_OF_ART":4488,"LOC":4055,"TIME":3678,"QUANTITY":3123,"FAC":3046,"EVENT":3021,"ORDINAL":2142,"PRODUCT":1787,"LAW":1624,"LANGUAGE":355},"4":{"ORG":56516,"DATE":40493,"PERSON":36534,"GPE":26745,"MONEY":15158,"CARDINAL":14109,"NORP":9641,"PERCENT":9199,"WORK_OF_ART":4488,"LOC":4055,"TIME":3678,"QUANTITY":3123,"FAC":3046,"EVENT":3021,"ORDINAL":2142,"PRODUCT":1787,"LAW":1624,"LANGUAGE":355,"":1},"5":{"":1}}�cfg��neg_key�
en_core_web_sm-3.6.0/parser/cfg ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "moves":null,
3
+ "update_with_oracle_cut_size":100,
4
+ "multitasks":[
5
+
6
+ ],
7
+ "min_action_freq":30,
8
+ "learn_tokens":false,
9
+ "beam_width":1,
10
+ "beam_density":0.0,
11
+ "beam_update_prob":0.0,
12
+ "incorrect_spans_key":null
13
+ }
en_core_web_sm-3.6.0/parser/model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1836fbc02b3924b2fd5f65325c58ae852ff112db1090ca724e5a801e68b85fd
3
+ size 319909
en_core_web_sm-3.6.0/parser/moves ADDED
@@ -0,0 +1 @@
 
 
1
+ ��moves� {"0":{"":994332},"1":{"":999432},"2":{"det":172595,"nsubj":165748,"compound":116623,"amod":105184,"aux":86667,"punct":65478,"advmod":62763,"poss":36443,"mark":27941,"nummod":22598,"auxpass":15594,"prep":14001,"nsubjpass":13856,"neg":12357,"cc":10739,"nmod":9562,"advcl":9062,"npadvmod":8168,"quantmod":7101,"intj":6464,"ccomp":5896,"dobj":3427,"expl":3360,"dep":2871,"predet":1944,"parataxis":1837,"csubj":1428,"preconj":621,"pobj||prep":616,"attr":578,"meta":376,"advmod||conj":368,"dobj||xcomp":352,"acomp":284,"nsubj||ccomp":224,"dative":206,"advmod||xcomp":149,"dobj||ccomp":70,"csubjpass":64,"dobj||conj":62,"prep||conj":51,"acl":48,"prep||nsubj":41,"prep||dobj":36,"xcomp":34,"advmod||ccomp":32,"oprd":31},"3":{"punct":183790,"pobj":182191,"prep":174008,"dobj":89615,"conj":59687,"cc":51930,"ccomp":30385,"advmod":22861,"xcomp":21021,"relcl":20969,"advcl":19828,"attr":17741,"acomp":16922,"appos":15265,"case":13388,"acl":12085,"pcomp":10324,"dep":10116,"npadvmod":9796,"prt":8179,"agent":3903,"dative":3866,"nsubj":3470,"neg":2906,"amod":2839,"intj":2819,"nummod":2732,"oprd":2301,"parataxis":1261,"quantmod":319,"nmod":294,"acl||dobj":200,"prep||dobj":190,"prep||nsubj":162,"acl||nsubj":159,"appos||nsubj":145,"relcl||dobj":134,"relcl||nsubj":111,"aux":103,"expl":96,"meta":92,"appos||dobj":86,"preconj":71,"csubj":65,"prep||nsubjpass":55,"prep||advmod":54,"prep||acomp":53,"det":51,"nsubjpass":45,"relcl||pobj":42,"acl||nsubjpass":42,"mark":40,"auxpass":39,"prep||pobj":36,"relcl||nsubjpass":32,"appos||nsubjpass":31},"4":{"ROOT":111664}}�cfg��neg_key�
en_core_web_sm-3.6.0/senter/cfg ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "overwrite":false
3
+ }
en_core_web_sm-3.6.0/senter/model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e62c2504dcdc66144b30c048100af05f12207f933f6d669982b947ae71ffdeef
3
+ size 197089
en_core_web_sm-3.6.0/tagger/cfg ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "label_smoothing":0.0,
3
+ "labels":[
4
+ "$",
5
+ "''",
6
+ ",",
7
+ "-LRB-",
8
+ "-RRB-",
9
+ ".",
10
+ ":",
11
+ "ADD",
12
+ "AFX",
13
+ "CC",
14
+ "CD",
15
+ "DT",
16
+ "EX",
17
+ "FW",
18
+ "HYPH",
19
+ "IN",
20
+ "JJ",
21
+ "JJR",
22
+ "JJS",
23
+ "LS",
24
+ "MD",
25
+ "NFP",
26
+ "NN",
27
+ "NNP",
28
+ "NNPS",
29
+ "NNS",
30
+ "PDT",
31
+ "POS",
32
+ "PRP",
33
+ "PRP$",
34
+ "RB",
35
+ "RBR",
36
+ "RBS",
37
+ "RP",
38
+ "SYM",
39
+ "TO",
40
+ "UH",
41
+ "VB",
42
+ "VBD",
43
+ "VBG",
44
+ "VBN",
45
+ "VBP",
46
+ "VBZ",
47
+ "WDT",
48
+ "WP",
49
+ "WP$",
50
+ "WRB",
51
+ "XX",
52
+ "_SP",
53
+ "``"
54
+ ],
55
+ "neg_prefix":"!",
56
+ "overwrite":false
57
+ }
en_core_web_sm-3.6.0/tagger/model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb00ef592a2a464d95dd889ce424952ae7fd64e095153054c310345198cc0fc4
3
+ size 19829
en_core_web_sm-3.6.0/tok2vec/cfg ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+
3
+ }
en_core_web_sm-3.6.0/tok2vec/model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42d8414521eaf75f817bd1b351b26039a22a912bb2617f95ead305420f2ebffd
3
+ size 6269370
en_core_web_sm-3.6.0/tokenizer ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ��prefix_search� �^§|^%|^=|^—|^–|^\+(?![0-9])|^…|^……|^,|^:|^;|^\!|^\?|^¿|^؟|^¡|^\(|^\)|^\[|^\]|^\{|^\}|^<|^>|^_|^#|^\*|^&|^。|^?|^!|^,|^、|^;|^:|^~|^·|^।|^،|^۔|^؛|^٪|^\.\.+|^…|^\'|^"|^”|^“|^`|^‘|^´|^’|^‚|^,|^„|^»|^«|^「|^」|^『|^』|^(|^)|^〔|^〕|^【|^】|^《|^》|^〈|^〉|^〈|^〉|^⟦|^⟧|^\$|^£|^€|^¥|^฿|^US\$|^C\$|^A\$|^₽|^﷼|^₴|^₠|^₡|^₢|^₣|^₤|^₥|^₦|^₧|^₨|^₩|^₪|^₫|^€|^₭|^₮|^₯|^₰|^₱|^₲|^₳|^₴|^₵|^₶|^₷|^₸|^₹|^₺|^₻|^₼|^₽|^₾|^₿|^[\u00A6\u00A9\u00AE\u00B0\u0482\u058D\u058E\u060E\u060F\u06DE\u06E9\u06FD\u06FE\u07F6\u09FA\u0B70\u0BF3-\u0BF8\u0BFA\u0C7F\u0D4F\u0D79\u0F01-\u0F03\u0F13\u0F15-\u0F17\u0F1A-\u0F1F\u0F34\u0F36\u0F38\u0FBE-\u0FC5\u0FC7-\u0FCC\u0FCE\u0FCF\u0FD5-\u0FD8\u109E\u109F\u1390-\u1399\u1940\u19DE-\u19FF\u1B61-\u1B6A\u1B74-\u1B7C\u2100\u2101\u2103-\u2106\u2108\u2109\u2114\u2116\u2117\u211E-\u2123\u2125\u2127\u2129\u212E\u213A\u213B\u214A\u214C\u214D\u214F\u218A\u218B\u2195-\u2199\u219C-\u219F\u21A1\u21A2\u21A4\u21A5\u21A7-\u21AD\u21AF-\u21CD\u21D0\u21D1\u21D3\u21D5-\u21F3\u2300-\u2307\u230C-\u231F\u2322-\u2328\u232B-\u237B\u237D-\u239A\u23B4-\u23DB\u23E2-\u2426\u2440-\u244A\u249C-\u24E9\u2500-\u25B6\u25B8-\u25C0\u25C2-\u25F7\u2600-\u266E\u2670-\u2767\u2794-\u27BF\u2800-\u28FF\u2B00-\u2B2F\u2B45\u2B46\u2B4D-\u2B73\u2B76-\u2B95\u2B98-\u2BC8\u2BCA-\u2BFE\u2CE5-\u2CEA\u2E80-\u2E99\u2E9B-\u2EF3\u2F00-\u2FD5\u2FF0-\u2FFB\u3004\u3012\u3013\u3020\u3036\u3037\u303E\u303F\u3190\u3191\u3196-\u319F\u31C0-\u31E3\u3200-\u321E\u322A-\u3247\u3250\u3260-\u327F\u328A-\u32B0\u32C0-\u32FE\u3300-\u33FF\u4DC0-\u4DFF\uA490-\uA4C6\uA828-\uA82B\uA836\uA837\uA839\uAA77-\uAA79\uFDFD\uFFE4\uFFE8\uFFED\uFFEE\uFFFC\uFFFD\U00010137-\U0001013F\U00010179-\U00010189\U0001018C-\U0001018E\U00010190-\U0001019B\U000101A0\U000101D0-\U000101FC\U00010877\U00010878\U00010AC8\U0001173F\U00016B3C-\U00016B3F\U00016B45\U0001BC9C\U0001D000-\U0001D0F5\U0001D100-\U0001D126\U0001D129-\U0001D164\U0001D16A-\U0001D16C\U0001D183\U0001D184\U0001D18C-\U0001D1A9\U0001D1AE-\U0001D1E8\U0001D200-\U0001D241\U0001D245\U0001D300-\U0001D356\U0001D800-\U0001D9FF\U0001DA37-\U0001DA3A\U0001DA6D-\U0001DA74\U0001DA76-\U0001DA83\U0001DA85\U0001DA86\U0001ECAC\U0001F000-\U0001F02B\U0001F030-\U0001F093\U0001F0A0-\U0001F0AE\U0001F0B1-\U0001F0BF\U0001F0C1-\U0001F0CF\U0001F0D1-\U0001F0F5\U0001F110-\U0001F16B\U0001F170-\U0001F1AC\U0001F1E6-\U0001F202\U0001F210-\U0001F23B\U0001F240-\U0001F248\U0001F250\U0001F251\U0001F260-\U0001F265\U0001F300-\U0001F3FA\U0001F400-\U0001F6D4\U0001F6E0-\U0001F6EC\U0001F6F0-\U0001F6F9\U0001F700-\U0001F773\U0001F780-\U0001F7D8\U0001F800-\U0001F80B\U0001F810-\U0001F847\U0001F850-\U0001F859\U0001F860-\U0001F887\U0001F890-\U0001F8AD\U0001F900-\U0001F90B\U0001F910-\U0001F93E\U0001F940-\U0001F970\U0001F973-\U0001F976\U0001F97A\U0001F97C-\U0001F9A2\U0001F9B0-\U0001F9B9\U0001F9C0-\U0001F9C2\U0001F9D0-\U0001F9FF\U0001FA60-\U0001FA6D]�suffix_search�2�…$|……$|,$|:$|;$|\!$|\?$|¿$|؟$|¡$|\($|\)$|\[$|\]$|\{$|\}$|<$|>$|_$|#$|\*$|&$|。$|?$|!$|,$|、$|;$|:$|~$|·$|।$|،$|۔$|؛$|٪$|\.\.+$|…$|\'$|"$|”$|“$|`$|‘$|´$|’$|‚$|,$|„$|»$|«$|「$|」$|『$|』$|($|)$|〔$|〕$|【$|】$|《$|》$|〈$|〉$|〈$|〉$|⟦$|⟧$|[\u00A6\u00A9\u00AE\u00B0\u0482\u058D\u058E\u060E\u060F\u06DE\u06E9\u06FD\u06FE\u07F6\u09FA\u0B70\u0BF3-\u0BF8\u0BFA\u0C7F\u0D4F\u0D79\u0F01-\u0F03\u0F13\u0F15-\u0F17\u0F1A-\u0F1F\u0F34\u0F36\u0F38\u0FBE-\u0FC5\u0FC7-\u0FCC\u0FCE\u0FCF\u0FD5-\u0FD8\u109E\u109F\u1390-\u1399\u1940\u19DE-\u19FF\u1B61-\u1B6A\u1B74-\u1B7C\u2100\u2101\u2103-\u2106\u2108\u2109\u2114\u2116\u2117\u211E-\u2123\u2125\u2127\u2129\u212E\u213A\u213B\u214A\u214C\u214D\u214F\u218A\u218B\u2195-\u2199\u219C-\u219F\u21A1\u21A2\u21A4\u21A5\u21A7-\u21AD\u21AF-\u21CD\u21D0\u21D1\u21D3\u21D5-\u21F3\u2300-\u2307\u230C-\u231F\u2322-\u2328\u232B-\u237B\u237D-\u239A\u23B4-\u23DB\u23E2-\u2426\u2440-\u244A\u249C-\u24E9\u2500-\u25B6\u25B8-\u25C0\u25C2-\u25F7\u2600-\u266E\u2670-\u2767\u2794-\u27BF\u2800-\u28FF\u2B00-\u2B2F\u2B45\u2B46\u2B4D-\u2B73\u2B76-\u2B95\u2B98-\u2BC8\u2BCA-\u2BFE\u2CE5-\u2CEA\u2E80-\u2E99\u2E9B-\u2EF3\u2F00-\u2FD5\u2FF0-\u2FFB\u3004\u3012\u3013\u3020\u3036\u3037\u303E\u303F\u3190\u3191\u3196-\u319F\u31C0-\u31E3\u3200-\u321E\u322A-\u3247\u3250\u3260-\u327F\u328A-\u32B0\u32C0-\u32FE\u3300-\u33FF\u4DC0-\u4DFF\uA490-\uA4C6\uA828-\uA82B\uA836\uA837\uA839\uAA77-\uAA79\uFDFD\uFFE4\uFFE8\uFFED\uFFEE\uFFFC\uFFFD\U00010137-\U0001013F\U00010179-\U00010189\U0001018C-\U0001018E\U00010190-\U0001019B\U000101A0\U000101D0-\U000101FC\U00010877\U00010878\U00010AC8\U0001173F\U00016B3C-\U00016B3F\U00016B45\U0001BC9C\U0001D000-\U0001D0F5\U0001D100-\U0001D126\U0001D129-\U0001D164\U0001D16A-\U0001D16C\U0001D183\U0001D184\U0001D18C-\U0001D1A9\U0001D1AE-\U0001D1E8\U0001D200-\U0001D241\U0001D245\U0001D300-\U0001D356\U0001D800-\U0001D9FF\U0001DA37-\U0001DA3A\U0001DA6D-\U0001DA74\U0001DA76-\U0001DA83\U0001DA85\U0001DA86\U0001ECAC\U0001F000-\U0001F02B\U0001F030-\U0001F093\U0001F0A0-\U0001F0AE\U0001F0B1-\U0001F0BF\U0001F0C1-\U0001F0CF\U0001F0D1-\U0001F0F5\U0001F110-\U0001F16B\U0001F170-\U0001F1AC\U0001F1E6-\U0001F202\U0001F210-\U0001F23B\U0001F240-\U0001F248\U0001F250\U0001F251\U0001F260-\U0001F265\U0001F300-\U0001F3FA\U0001F400-\U0001F6D4\U0001F6E0-\U0001F6EC\U0001F6F0-\U0001F6F9\U0001F700-\U0001F773\U0001F780-\U0001F7D8\U0001F800-\U0001F80B\U0001F810-\U0001F847\U0001F850-\U0001F859\U0001F860-\U0001F887\U0001F890-\U0001F8AD\U0001F900-\U0001F90B\U0001F910-\U0001F93E\U0001F940-\U0001F970\U0001F973-\U0001F976\U0001F97A\U0001F97C-\U0001F9A2\U0001F9B0-\U0001F9B9\U0001F9C0-\U0001F9C2\U0001F9D0-\U0001F9FF\U0001FA60-\U0001FA6D]$|'s$|'S$|’s$|’S$|—$|–$|(?<=[0-9])\+$|(?<=°[FfCcKk])\.$|(?<=[0-9])(?:\$|£|€|¥|฿|US\$|C\$|A\$|₽|﷼|₴|₠|₡|₢|₣|₤|₥|₦|₧|₨|₩|₪|₫|€|₭|₮|₯|₰|₱|₲|₳|₴|₵|₶|₷|₸|₹|₺|₻|₼|₽|₾|₿)$|(?<=[0-9])(?:km|km²|km³|m|m²|m³|dm|dm²|dm³|cm|cm²|cm³|mm|mm²|mm³|ha|µm|nm|yd|in|ft|kg|g|mg|µg|t|lb|oz|m/s|km/h|kmh|mph|hPa|Pa|mbar|mb|MB|kb|KB|gb|GB|tb|TB|T|G|M|K|%|км|км²|км³|м|м²|м³|дм|дм²|дм³|см|см²|см³|мм|мм²|мм³|нм|кг|г|мг|м/с|км/ч|кПа|Па|мбар|Кб|КБ|кб|Мб|МБ|мб|Гб|ГБ|гб|Тб|ТБ|тбكم|كم²|كم³|م|م²|م³|سم|سم²|سم³|مم|مم²|مم³|كم|غرام|جرام|جم|كغ|ملغ|كوب|اكواب)$|(?<=[0-9a-z\uFF41-\uFF5A\u00DF-\u00F6\u00F8-\u00FF\u0101\u0103\u0105\u0107\u0109\u010B\u010D\u010F\u0111\u0113\u0115\u0117\u0119\u011B\u011D\u011F\u0121\u0123\u0125\u0127\u0129\u012B\u012D\u012F\u0131\u0133\u0135\u0137\u0138\u013A\u013C\u013E\u0140\u0142\u0144\u0146\u0148\u0149\u014B\u014D\u014F\u0151\u0153\u0155\u0157\u0159\u015B\u015D\u015F\u0161\u0163\u0165\u0167\u0169\u016B\u016D\u016F\u0171\u0173\u0175\u0177\u017A\u017C\u017E\u017F\u0180\u0183\u0185\u0188\u018C\u018D\u0192\u0195\u0199-\u019B\u019E\u01A1\u01A3\u01A5\u01A8\u01AA\u01AB\u01AD\u01B0\u01B4\u01B6\u01B9\u01BA\u01BD-\u01BF\u01C6\u01C9\u01CC\u01CE\u01D0\u01D2\u01D4\u01D6\u01D8\u01DA\u01DC\u01DD\u01DF\u01E1\u01E3\u01E5\u01E7\u01E9\u01EB\u01ED\u01EF\u01F0\u01F3\u01F5\u01F9\u01FB\u01FD\u01FF\u0201\u0203\u0205\u0207\u0209\u020B\u020D\u020F\u0211\u0213\u0215\u0217\u0219\u021B\u021D\u021F\u0221\u0223\u0225\u0227\u0229\u022B\u022D\u022F\u0231\u0233-\u0239\u023C\u023F\u0240\u0242\u0247\u0249\u024B\u024D\u024F\u2C61\u2C65\u2C66\u2C68\u2C6A\u2C6C\u2C71\u2C73\u2C74\u2C76-\u2C7B\uA723\uA725\uA727\uA729\uA72B\uA72D\uA72F-\uA731\uA733\uA735\uA737\uA739\uA73B\uA73D\uA73F\uA741\uA743\uA745\uA747\uA749\uA74B\uA74D\uA74F\uA751\uA753\uA755\uA757\uA759\uA75B\uA75D\uA75F\uA761\uA763\uA765\uA767\uA769\uA76B\uA76D\uA76F\uA771-\uA778\uA77A\uA77C\uA77F\uA781\uA783\uA785\uA787\uA78C\uA78E\uA791\uA793-\uA795\uA797\uA799\uA79B\uA79D\uA79F\uA7A1\uA7A3\uA7A5\uA7A7\uA7A9\uA7AF\uA7B5\uA7B7\uA7B9\uA7FA\uAB30-\uAB5A\uAB60-\uAB64\u0250-\u02AF\u1D00-\u1D25\u1D6B-\u1D77\u1D79-\u1D9A\u1E01\u1E03\u1E05\u1E07\u1E09\u1E0B\u1E0D\u1E0F\u1E11\u1E13\u1E15\u1E17\u1E19\u1E1B\u1E1D\u1E1F\u1E21\u1E23\u1E25\u1E27\u1E29\u1E2B\u1E2D\u1E2F\u1E31\u1E33\u1E35\u1E37\u1E39\u1E3B\u1E3D\u1E3F\u1E41\u1E43\u1E45\u1E47\u1E49\u1E4B\u1E4D\u1E4F\u1E51\u1E53\u1E55\u1E57\u1E59\u1E5B\u1E5D\u1E5F\u1E61\u1E63\u1E65\u1E67\u1E69\u1E6B\u1E6D\u1E6F\u1E71\u1E73\u1E75\u1E77\u1E79\u1E7B\u1E7D\u1E7F\u1E81\u1E83\u1E85\u1E87\u1E89\u1E8B\u1E8D\u1E8F\u1E91\u1E93\u1E95-\u1E9D\u1E9F\u1EA1\u1EA3\u1EA5\u1EA7\u1EA9\u1EAB\u1EAD\u1EAF\u1EB1\u1EB3\u1EB5\u1EB7\u1EB9\u1EBB\u1EBD\u1EBF\u1EC1\u1EC3\u1EC5\u1EC7\u1EC9\u1ECB\u1ECD\u1ECF\u1ED1\u1ED3\u1ED5\u1ED7\u1ED9\u1EDB\u1EDD\u1EDF\u1EE1\u1EE3\u1EE5\u1EE7\u1EE9\u1EEB\u1EED\u1EEF\u1EF1\u1EF3\u1EF5\u1EF7\u1EF9\u1EFB\u1EFD\u1EFFёа-яәөүҗңһα-ωάέίόώήύа-щюяіїєґѓѕјљњќѐѝ\u1200-\u137F\u0980-\u09FF\u0591-\u05F4\uFB1D-\uFB4F\u0620-\u064A\u066E-\u06D5\u06E5-\u06FF\u0750-\u077F\u08A0-\u08BD\uFB50-\uFBB1\uFBD3-\uFD3D\uFD50-\uFDC7\uFDF0-\uFDFB\uFE70-\uFEFC\U0001EE00-\U0001EEBB\u0D80-\u0DFF\u0900-\u097F\u0C80-\u0CFF\u0B80-\u0BFF\u0C00-\u0C7F\uAC00-\uD7AF\u1100-\u11FF\u3040-\u309F\u30A0-\u30FFー\u4E00-\u62FF\u6300-\u77FF\u7800-\u8CFF\u8D00-\u9FFF\u3400-\u4DBF\U00020000-\U000215FF\U00021600-\U000230FF\U00023100-\U000245FF\U00024600-\U000260FF\U00026100-\U000275FF\U00027600-\U000290FF\U00029100-\U0002A6DF\U0002A700-\U0002B73F\U0002B740-\U0002B81F\U0002B820-\U0002CEAF\U0002CEB0-\U0002EBEF\u2E80-\u2EFF\u2F00-\u2FDF\u2FF0-\u2FFF\u3000-\u303F\u31C0-\u31EF\u3200-\u32FF\u3300-\u33FF\uF900-\uFAFF\uFE30-\uFE4F\U0001F200-\U0001F2FF\U0002F800-\U0002FA1F%²\-\+…|……|,|:|;|\!|\?|¿|؟|¡|\(|\)|\[|\]|\{|\}|<|>|_|#|\*|&|。|?|!|,|、|;|:|~|·|।|،|۔|؛|٪(?:\'"”“`‘´’‚,„»«「」『』()〔〕【】《》〈〉〈〉⟦⟧)])\.$|(?<=[A-Z\uFF21-\uFF3A\u00C0-\u00D6\u00D8-\u00DE\u0100\u0102\u0104\u0106\u0108\u010A\u010C\u010E\u0110\u0112\u0114\u0116\u0118\u011A\u011C\u011E\u0120\u0122\u0124\u0126\u0128\u012A\u012C\u012E\u0130\u0132\u0134\u0136\u0139\u013B\u013D\u013F\u0141\u0143\u0145\u0147\u014A\u014C\u014E\u0150\u0152\u0154\u0156\u0158\u015A\u015C\u015E\u0160\u0162\u0164\u0166\u0168\u016A\u016C\u016E\u0170\u0172\u0174\u0176\u0178\u0179\u017B\u017D\u0181\u0182\u0184\u0186\u0187\u0189-\u018B\u018E-\u0191\u0193\u0194\u0196-\u0198\u019C\u019D\u019F\u01A0\u01A2\u01A4\u01A6\u01A7\u01A9\u01AC\u01AE\u01AF\u01B1-\u01B3\u01B5\u01B7\u01B8\u01BC\u01C4\u01C7\u01CA\u01CD\u01CF\u01D1\u01D3\u01D5\u01D7\u01D9\u01DB\u01DE\u01E0\u01E2\u01E4\u01E6\u01E8\u01EA\u01EC\u01EE\u01F1\u01F4\u01F6-\u01F8\u01FA\u01FC\u01FE\u0200\u0202\u0204\u0206\u0208\u020A\u020C\u020E\u0210\u0212\u0214\u0216\u0218\u021A\u021C\u021E\u0220\u0222\u0224\u0226\u0228\u022A\u022C\u022E\u0230\u0232\u023A\u023B\u023D\u023E\u0241\u0243-\u0246\u0248\u024A\u024C\u024E\u2C60\u2C62-\u2C64\u2C67\u2C69\u2C6B\u2C6D-\u2C70\u2C72\u2C75\u2C7E\u2C7F\uA722\uA724\uA726\uA728\uA72A\uA72C\uA72E\uA732\uA734\uA736\uA738\uA73A\uA73C\uA73E\uA740\uA742\uA744\uA746\uA748\uA74A\uA74C\uA74E\uA750\uA752\uA754\uA756\uA758\uA75A\uA75C\uA75E\uA760\uA762\uA764\uA766\uA768\uA76A\uA76C\uA76E\uA779\uA77B\uA77D\uA77E\uA780\uA782\uA784\uA786\uA78B\uA78D\uA790\uA792\uA796\uA798\uA79A\uA79C\uA79E\uA7A0\uA7A2\uA7A4\uA7A6\uA7A8\uA7AA-\uA7AE\uA7B0-\uA7B4\uA7B6\uA7B8\u1E00\u1E02\u1E04\u1E06\u1E08\u1E0A\u1E0C\u1E0E\u1E10\u1E12\u1E14\u1E16\u1E18\u1E1A\u1E1C\u1E1E\u1E20\u1E22\u1E24\u1E26\u1E28\u1E2A\u1E2C\u1E2E\u1E30\u1E32\u1E34\u1E36\u1E38\u1E3A\u1E3C\u1E3E\u1E40\u1E42\u1E44\u1E46\u1E48\u1E4A\u1E4C\u1E4E\u1E50\u1E52\u1E54\u1E56\u1E58\u1E5A\u1E5C\u1E5E\u1E60\u1E62\u1E64\u1E66\u1E68\u1E6A\u1E6C\u1E6E\u1E70\u1E72\u1E74\u1E76\u1E78\u1E7A\u1E7C\u1E7E\u1E80\u1E82\u1E84\u1E86\u1E88\u1E8A\u1E8C\u1E8E\u1E90\u1E92\u1E94\u1E9E\u1EA0\u1EA2\u1EA4\u1EA6\u1EA8\u1EAA\u1EAC\u1EAE\u1EB0\u1EB2\u1EB4\u1EB6\u1EB8\u1EBA\u1EBC\u1EBE\u1EC0\u1EC2\u1EC4\u1EC6\u1EC8\u1ECA\u1ECC\u1ECE\u1ED0\u1ED2\u1ED4\u1ED6\u1ED8\u1EDA\u1EDC\u1EDE\u1EE0\u1EE2\u1EE4\u1EE6\u1EE8\u1EEA\u1EEC\u1EEE\u1EF0\u1EF2\u1EF4\u1EF6\u1EF8\u1EFA\u1EFC\u1EFEЁА-ЯӘӨҮҖҢҺΑ-ΩΆΈΊΌΏΉΎА-ЩЮЯІЇЄҐЃЅЈЉЊЌЀЍ\u1200-\u137F\u0980-\u09FF\u0591-\u05F4\uFB1D-\uFB4F\u0620-\u064A\u066E-\u06D5\u06E5-\u06FF\u0750-\u077F\u08A0-\u08BD\uFB50-\uFBB1\uFBD3-\uFD3D\uFD50-\uFDC7\uFDF0-\uFDFB\uFE70-\uFEFC\U0001EE00-\U0001EEBB\u0D80-\u0DFF\u0900-\u097F\u0C80-\u0CFF\u0B80-\u0BFF\u0C00-\u0C7F\uAC00-\uD7AF\u1100-\u11FF\u3040-\u309F\u30A0-\u30FFー\u4E00-\u62FF\u6300-\u77FF\u7800-\u8CFF\u8D00-\u9FFF\u3400-\u4DBF\U00020000-\U000215FF\U00021600-\U000230FF\U00023100-\U000245FF\U00024600-\U000260FF\U00026100-\U000275FF\U00027600-\U000290FF\U00029100-\U0002A6DF\U0002A700-\U0002B73F\U0002B740-\U0002B81F\U0002B820-\U0002CEAF\U0002CEB0-\U0002EBEF\u2E80-\u2EFF\u2F00-\u2FDF\u2FF0-\u2FFF\u3000-\u303F\u31C0-\u31EF\u3200-\u32FF\u3300-\u33FF\uF900-\uFAFF\uFE30-\uFE4F\U0001F200-\U0001F2FF\U0002F800-\U0002FA1F][A-Z\uFF21-\uFF3A\u00C0-\u00D6\u00D8-\u00DE\u0100\u0102\u0104\u0106\u0108\u010A\u010C\u010E\u0110\u0112\u0114\u0116\u0118\u011A\u011C\u011E\u0120\u0122\u0124\u0126\u0128\u012A\u012C\u012E\u0130\u0132\u0134\u0136\u0139\u013B\u013D\u013F\u0141\u0143\u0145\u0147\u014A\u014C\u014E\u0150\u0152\u0154\u0156\u0158\u015A\u015C\u015E\u0160\u0162\u0164\u0166\u0168\u016A\u016C\u016E\u0170\u0172\u0174\u0176\u0178\u0179\u017B\u017D\u0181\u0182\u0184\u0186\u0187\u0189-\u018B\u018E-\u0191\u0193\u0194\u0196-\u0198\u019C\u019D\u019F\u01A0\u01A2\u01A4\u01A6\u01A7\u01A9\u01AC\u01AE\u01AF\u01B1-\u01B3\u01B5\u01B7\u01B8\u01BC\u01C4\u01C7\u01CA\u01CD\u01CF\u01D1\u01D3\u01D5\u01D7\u01D9\u01DB\u01DE\u01E0\u01E2\u01E4\u01E6\u01E8\u01EA\u01EC\u01EE\u01F1\u01F4\u01F6-\u01F8\u01FA\u01FC\u01FE\u0200\u0202\u0204\u0206\u0208\u020A\u020C\u020E\u0210\u0212\u0214\u0216\u0218\u021A\u021C\u021E\u0220\u0222\u0224\u0226\u0228\u022A\u022C\u022E\u0230\u0232\u023A\u023B\u023D\u023E\u0241\u0243-\u0246\u0248\u024A\u024C\u024E\u2C60\u2C62-\u2C64\u2C67\u2C69\u2C6B\u2C6D-\u2C70\u2C72\u2C75\u2C7E\u2C7F\uA722\uA724\uA726\uA728\uA72A\uA72C\uA72E\uA732\uA734\uA736\uA738\uA73A\uA73C\uA73E\uA740\uA742\uA744\uA746\uA748\uA74A\uA74C\uA74E\uA750\uA752\uA754\uA756\uA758\uA75A\uA75C\uA75E\uA760\uA762\uA764\uA766\uA768\uA76A\uA76C\uA76E\uA779\uA77B\uA77D\uA77E\uA780\uA782\uA784\uA786\uA78B\uA78D\uA790\uA792\uA796\uA798\uA79A\uA79C\uA79E\uA7A0\uA7A2\uA7A4\uA7A6\uA7A8\uA7AA-\uA7AE\uA7B0-\uA7B4\uA7B6\uA7B8\u1E00\u1E02\u1E04\u1E06\u1E08\u1E0A\u1E0C\u1E0E\u1E10\u1E12\u1E14\u1E16\u1E18\u1E1A\u1E1C\u1E1E\u1E20\u1E22\u1E24\u1E26\u1E28\u1E2A\u1E2C\u1E2E\u1E30\u1E32\u1E34\u1E36\u1E38\u1E3A\u1E3C\u1E3E\u1E40\u1E42\u1E44\u1E46\u1E48\u1E4A\u1E4C\u1E4E\u1E50\u1E52\u1E54\u1E56\u1E58\u1E5A\u1E5C\u1E5E\u1E60\u1E62\u1E64\u1E66\u1E68\u1E6A\u1E6C\u1E6E\u1E70\u1E72\u1E74\u1E76\u1E78\u1E7A\u1E7C\u1E7E\u1E80\u1E82\u1E84\u1E86\u1E88\u1E8A\u1E8C\u1E8E\u1E90\u1E92\u1E94\u1E9E\u1EA0\u1EA2\u1EA4\u1EA6\u1EA8\u1EAA\u1EAC\u1EAE\u1EB0\u1EB2\u1EB4\u1EB6\u1EB8\u1EBA\u1EBC\u1EBE\u1EC0\u1EC2\u1EC4\u1EC6\u1EC8\u1ECA\u1ECC\u1ECE\u1ED0\u1ED2\u1ED4\u1ED6\u1ED8\u1EDA\u1EDC\u1EDE\u1EE0\u1EE2\u1EE4\u1EE6\u1EE8\u1EEA\u1EEC\u1EEE\u1EF0\u1EF2\u1EF4\u1EF6\u1EF8\u1EFA\u1EFC\u1EFEЁА-ЯӘӨҮҖҢҺΑ-ΩΆΈΊΌΏΉΎА-ЩЮЯІЇЄҐЃЅЈЉЊЌЀЍ\u1200-\u137F\u0980-\u09FF\u0591-\u05F4\uFB1D-\uFB4F\u0620-\u064A\u066E-\u06D5\u06E5-\u06FF\u0750-\u077F\u08A0-\u08BD\uFB50-\uFBB1\uFBD3-\uFD3D\uFD50-\uFDC7\uFDF0-\uFDFB\uFE70-\uFEFC\U0001EE00-\U0001EEBB\u0D80-\u0DFF\u0900-\u097F\u0C80-\u0CFF\u0B80-\u0BFF\u0C00-\u0C7F\uAC00-\uD7AF\u1100-\u11FF\u3040-\u309F\u30A0-\u30FFー\u4E00-\u62FF\u6300-\u77FF\u7800-\u8CFF\u8D00-\u9FFF\u3400-\u4DBF\U00020000-\U000215FF\U00021600-\U000230FF\U00023100-\U000245FF\U00024600-\U000260FF\U00026100-\U000275FF\U00027600-\U000290FF\U00029100-\U0002A6DF\U0002A700-\U0002B73F\U0002B740-\U0002B81F\U0002B820-\U0002CEAF\U0002CEB0-\U0002EBEF\u2E80-\u2EFF\u2F00-\u2FDF\u2FF0-\u2FFF\u3000-\u303F\u31C0-\u31EF\u3200-\u32FF\u3300-\u33FF\uF900-\uFAFF\uFE30-\uFE4F\U0001F200-\U0001F2FF\U0002F800-\U0002FA1F])\.$�infix_finditer�>�\.\.+|…|[\u00A6\u00A9\u00AE\u00B0\u0482\u058D\u058E\u060E\u060F\u06DE\u06E9\u06FD\u06FE\u07F6\u09FA\u0B70\u0BF3-\u0BF8\u0BFA\u0C7F\u0D4F\u0D79\u0F01-\u0F03\u0F13\u0F15-\u0F17\u0F1A-\u0F1F\u0F34\u0F36\u0F38\u0FBE-\u0FC5\u0FC7-\u0FCC\u0FCE\u0FCF\u0FD5-\u0FD8\u109E\u109F\u1390-\u1399\u1940\u19DE-\u19FF\u1B61-\u1B6A\u1B74-\u1B7C\u2100\u2101\u2103-\u2106\u2108\u2109\u2114\u2116\u2117\u211E-\u2123\u2125\u2127\u2129\u212E\u213A\u213B\u214A\u214C\u214D\u214F\u218A\u218B\u2195-\u2199\u219C-\u219F\u21A1\u21A2\u21A4\u21A5\u21A7-\u21AD\u21AF-\u21CD\u21D0\u21D1\u21D3\u21D5-\u21F3\u2300-\u2307\u230C-\u231F\u2322-\u2328\u232B-\u237B\u237D-\u239A\u23B4-\u23DB\u23E2-\u2426\u2440-\u244A\u249C-\u24E9\u2500-\u25B6\u25B8-\u25C0\u25C2-\u25F7\u2600-\u266E\u2670-\u2767\u2794-\u27BF\u2800-\u28FF\u2B00-\u2B2F\u2B45\u2B46\u2B4D-\u2B73\u2B76-\u2B95\u2B98-\u2BC8\u2BCA-\u2BFE\u2CE5-\u2CEA\u2E80-\u2E99\u2E9B-\u2EF3\u2F00-\u2FD5\u2FF0-\u2FFB\u3004\u3012\u3013\u3020\u3036\u3037\u303E\u303F\u3190\u3191\u3196-\u319F\u31C0-\u31E3\u3200-\u321E\u322A-\u3247\u3250\u3260-\u327F\u328A-\u32B0\u32C0-\u32FE\u3300-\u33FF\u4DC0-\u4DFF\uA490-\uA4C6\uA828-\uA82B\uA836\uA837\uA839\uAA77-\uAA79\uFDFD\uFFE4\uFFE8\uFFED\uFFEE\uFFFC\uFFFD\U00010137-\U0001013F\U00010179-\U00010189\U0001018C-\U0001018E\U00010190-\U0001019B\U000101A0\U000101D0-\U000101FC\U00010877\U00010878\U00010AC8\U0001173F\U00016B3C-\U00016B3F\U00016B45\U0001BC9C\U0001D000-\U0001D0F5\U0001D100-\U0001D126\U0001D129-\U0001D164\U0001D16A-\U0001D16C\U0001D183\U0001D184\U0001D18C-\U0001D1A9\U0001D1AE-\U0001D1E8\U0001D200-\U0001D241\U0001D245\U0001D300-\U0001D356\U0001D800-\U0001D9FF\U0001DA37-\U0001DA3A\U0001DA6D-\U0001DA74\U0001DA76-\U0001DA83\U0001DA85\U0001DA86\U0001ECAC\U0001F000-\U0001F02B\U0001F030-\U0001F093\U0001F0A0-\U0001F0AE\U0001F0B1-\U0001F0BF\U0001F0C1-\U0001F0CF\U0001F0D1-\U0001F0F5\U0001F110-\U0001F16B\U0001F170-\U0001F1AC\U0001F1E6-\U0001F202\U0001F210-\U0001F23B\U0001F240-\U0001F248\U0001F250\U0001F251\U0001F260-\U0001F265\U0001F300-\U0001F3FA\U0001F400-\U0001F6D4\U0001F6E0-\U0001F6EC\U0001F6F0-\U0001F6F9\U0001F700-\U0001F773\U0001F780-\U0001F7D8\U0001F800-\U0001F80B\U0001F810-\U0001F847\U0001F850-\U0001F859\U0001F860-\U0001F887\U0001F890-\U0001F8AD\U0001F900-\U0001F90B\U0001F910-\U0001F93E\U0001F940-\U0001F970\U0001F973-\U0001F976\U0001F97A\U0001F97C-\U0001F9A2\U0001F9B0-\U0001F9B9\U0001F9C0-\U0001F9C2\U0001F9D0-\U0001F9FF\U0001FA60-\U0001FA6D]|(?<=[0-9])[+\-\*^](?=[0-9-])|(?<=[a-z\uFF41-\uFF5A\u00DF-\u00F6\u00F8-\u00FF\u0101\u0103\u0105\u0107\u0109\u010B\u010D\u010F\u0111\u0113\u0115\u0117\u0119\u011B\u011D\u011F\u0121\u0123\u0125\u0127\u0129\u012B\u012D\u012F\u0131\u0133\u0135\u0137\u0138\u013A\u013C\u013E\u0140\u0142\u0144\u0146\u0148\u0149\u014B\u014D\u014F\u0151\u0153\u0155\u0157\u0159\u015B\u015D\u015F\u0161\u0163\u0165\u0167\u0169\u016B\u016D\u016F\u0171\u0173\u0175\u0177\u017A\u017C\u017E\u017F\u0180\u0183\u0185\u0188\u018C\u018D\u0192\u0195\u0199-\u019B\u019E\u01A1\u01A3\u01A5\u01A8\u01AA\u01AB\u01AD\u01B0\u01B4\u01B6\u01B9\u01BA\u01BD-\u01BF\u01C6\u01C9\u01CC\u01CE\u01D0\u01D2\u01D4\u01D6\u01D8\u01DA\u01DC\u01DD\u01DF\u01E1\u01E3\u01E5\u01E7\u01E9\u01EB\u01ED\u01EF\u01F0\u01F3\u01F5\u01F9\u01FB\u01FD\u01FF\u0201\u0203\u0205\u0207\u0209\u020B\u020D\u020F\u0211\u0213\u0215\u0217\u0219\u021B\u021D\u021F\u0221\u0223\u0225\u0227\u0229\u022B\u022D\u022F\u0231\u0233-\u0239\u023C\u023F\u0240\u0242\u0247\u0249\u024B\u024D\u024F\u2C61\u2C65\u2C66\u2C68\u2C6A\u2C6C\u2C71\u2C73\u2C74\u2C76-\u2C7B\uA723\uA725\uA727\uA729\uA72B\uA72D\uA72F-\uA731\uA733\uA735\uA737\uA739\uA73B\uA73D\uA73F\uA741\uA743\uA745\uA747\uA749\uA74B\uA74D\uA74F\uA751\uA753\uA755\uA757\uA759\uA75B\uA75D\uA75F\uA761\uA763\uA765\uA767\uA769\uA76B\uA76D\uA76F\uA771-\uA778\uA77A\uA77C\uA77F\uA781\uA783\uA785\uA787\uA78C\uA78E\uA791\uA793-\uA795\uA797\uA799\uA79B\uA79D\uA79F\uA7A1\uA7A3\uA7A5\uA7A7\uA7A9\uA7AF\uA7B5\uA7B7\uA7B9\uA7FA\uAB30-\uAB5A\uAB60-\uAB64\u0250-\u02AF\u1D00-\u1D25\u1D6B-\u1D77\u1D79-\u1D9A\u1E01\u1E03\u1E05\u1E07\u1E09\u1E0B\u1E0D\u1E0F\u1E11\u1E13\u1E15\u1E17\u1E19\u1E1B\u1E1D\u1E1F\u1E21\u1E23\u1E25\u1E27\u1E29\u1E2B\u1E2D\u1E2F\u1E31\u1E33\u1E35\u1E37\u1E39\u1E3B\u1E3D\u1E3F\u1E41\u1E43\u1E45\u1E47\u1E49\u1E4B\u1E4D\u1E4F\u1E51\u1E53\u1E55\u1E57\u1E59\u1E5B\u1E5D\u1E5F\u1E61\u1E63\u1E65\u1E67\u1E69\u1E6B\u1E6D\u1E6F\u1E71\u1E73\u1E75\u1E77\u1E79\u1E7B\u1E7D\u1E7F\u1E81\u1E83\u1E85\u1E87\u1E89\u1E8B\u1E8D\u1E8F\u1E91\u1E93\u1E95-\u1E9D\u1E9F\u1EA1\u1EA3\u1EA5\u1EA7\u1EA9\u1EAB\u1EAD\u1EAF\u1EB1\u1EB3\u1EB5\u1EB7\u1EB9\u1EBB\u1EBD\u1EBF\u1EC1\u1EC3\u1EC5\u1EC7\u1EC9\u1ECB\u1ECD\u1ECF\u1ED1\u1ED3\u1ED5\u1ED7\u1ED9\u1EDB\u1EDD\u1EDF\u1EE1\u1EE3\u1EE5\u1EE7\u1EE9\u1EEB\u1EED\u1EEF\u1EF1\u1EF3\u1EF5\u1EF7\u1EF9\u1EFB\u1EFD\u1EFFёа-яәөүҗңһα-ωάέίόώήύа-щюяіїєґѓѕјљњќѐѝ\u1200-\u137F\u0980-\u09FF\u0591-\u05F4\uFB1D-\uFB4F\u0620-\u064A\u066E-\u06D5\u06E5-\u06FF\u0750-\u077F\u08A0-\u08BD\uFB50-\uFBB1\uFBD3-\uFD3D\uFD50-\uFDC7\uFDF0-\uFDFB\uFE70-\uFEFC\U0001EE00-\U0001EEBB\u0D80-\u0DFF\u0900-\u097F\u0C80-\u0CFF\u0B80-\u0BFF\u0C00-\u0C7F\uAC00-\uD7AF\u1100-\u11FF\u3040-\u309F\u30A0-\u30FFー\u4E00-\u62FF\u6300-\u77FF\u7800-\u8CFF\u8D00-\u9FFF\u3400-\u4DBF\U00020000-\U000215FF\U00021600-\U000230FF\U00023100-\U000245FF\U00024600-\U000260FF\U00026100-\U000275FF\U00027600-\U000290FF\U00029100-\U0002A6DF\U0002A700-\U0002B73F\U0002B740-\U0002B81F\U0002B820-\U0002CEAF\U0002CEB0-\U0002EBEF\u2E80-\u2EFF\u2F00-\u2FDF\u2FF0-\u2FFF\u3000-\u303F\u31C0-\u31EF\u3200-\u32FF\u3300-\u33FF\uF900-\uFAFF\uFE30-\uFE4F\U0001F200-\U0001F2FF\U0002F800-\U0002FA1F\'"”“`‘´’‚,„»«「」『』()〔〕【】《》〈〉〈〉⟦⟧])\.(?=[A-Z\uFF21-\uFF3A\u00C0-\u00D6\u00D8-\u00DE\u0100\u0102\u0104\u0106\u0108\u010A\u010C\u010E\u0110\u0112\u0114\u0116\u0118\u011A\u011C\u011E\u0120\u0122\u0124\u0126\u0128\u012A\u012C\u012E\u0130\u0132\u0134\u0136\u0139\u013B\u013D\u013F\u0141\u0143\u0145\u0147\u014A\u014C\u014E\u0150\u0152\u0154\u0156\u0158\u015A\u015C\u015E\u0160\u0162\u0164\u0166\u0168\u016A\u016C\u016E\u0170\u0172\u0174\u0176\u0178\u0179\u017B\u017D\u0181\u0182\u0184\u0186\u0187\u0189-\u018B\u018E-\u0191\u0193\u0194\u0196-\u0198\u019C\u019D\u019F\u01A0\u01A2\u01A4\u01A6\u01A7\u01A9\u01AC\u01AE\u01AF\u01B1-\u01B3\u01B5\u01B7\u01B8\u01BC\u01C4\u01C7\u01CA\u01CD\u01CF\u01D1\u01D3\u01D5\u01D7\u01D9\u01DB\u01DE\u01E0\u01E2\u01E4\u01E6\u01E8\u01EA\u01EC\u01EE\u01F1\u01F4\u01F6-\u01F8\u01FA\u01FC\u01FE\u0200\u0202\u0204\u0206\u0208\u020A\u020C\u020E\u0210\u0212\u0214\u0216\u0218\u021A\u021C\u021E\u0220\u0222\u0224\u0226\u0228\u022A\u022C\u022E\u0230\u0232\u023A\u023B\u023D\u023E\u0241\u0243-\u0246\u0248\u024A\u024C\u024E\u2C60\u2C62-\u2C64\u2C67\u2C69\u2C6B\u2C6D-\u2C70\u2C72\u2C75\u2C7E\u2C7F\uA722\uA724\uA726\uA728\uA72A\uA72C\uA72E\uA732\uA734\uA736\uA738\uA73A\uA73C\uA73E\uA740\uA742\uA744\uA746\uA748\uA74A\uA74C\uA74E\uA750\uA752\uA754\uA756\uA758\uA75A\uA75C\uA75E\uA760\uA762\uA764\uA766\uA768\uA76A\uA76C\uA76E\uA779\uA77B\uA77D\uA77E\uA780\uA782\uA784\uA786\uA78B\uA78D\uA790\uA792\uA796\uA798\uA79A\uA79C\uA79E\uA7A0\uA7A2\uA7A4\uA7A6\uA7A8\uA7AA-\uA7AE\uA7B0-\uA7B4\uA7B6\uA7B8\u1E00\u1E02\u1E04\u1E06\u1E08\u1E0A\u1E0C\u1E0E\u1E10\u1E12\u1E14\u1E16\u1E18\u1E1A\u1E1C\u1E1E\u1E20\u1E22\u1E24\u1E26\u1E28\u1E2A\u1E2C\u1E2E\u1E30\u1E32\u1E34\u1E36\u1E38\u1E3A\u1E3C\u1E3E\u1E40\u1E42\u1E44\u1E46\u1E48\u1E4A\u1E4C\u1E4E\u1E50\u1E52\u1E54\u1E56\u1E58\u1E5A\u1E5C\u1E5E\u1E60\u1E62\u1E64\u1E66\u1E68\u1E6A\u1E6C\u1E6E\u1E70\u1E72\u1E74\u1E76\u1E78\u1E7A\u1E7C\u1E7E\u1E80\u1E82\u1E84\u1E86\u1E88\u1E8A\u1E8C\u1E8E\u1E90\u1E92\u1E94\u1E9E\u1EA0\u1EA2\u1EA4\u1EA6\u1EA8\u1EAA\u1EAC\u1EAE\u1EB0\u1EB2\u1EB4\u1EB6\u1EB8\u1EBA\u1EBC\u1EBE\u1EC0\u1EC2\u1EC4\u1EC6\u1EC8\u1ECA\u1ECC\u1ECE\u1ED0\u1ED2\u1ED4\u1ED6\u1ED8\u1EDA\u1EDC\u1EDE\u1EE0\u1EE2\u1EE4\u1EE6\u1EE8\u1EEA\u1EEC\u1EEE\u1EF0\u1EF2\u1EF4\u1EF6\u1EF8\u1EFA\u1EFC\u1EFEЁА-ЯӘӨҮҖҢҺΑ-ΩΆΈΊΌΏΉΎА-ЩЮЯІЇЄҐЃЅЈЉЊЌЀЍ\u1200-\u137F\u0980-\u09FF\u0591-\u05F4\uFB1D-\uFB4F\u0620-\u064A\u066E-\u06D5\u06E5-\u06FF\u0750-\u077F\u08A0-\u08BD\uFB50-\uFBB1\uFBD3-\uFD3D\uFD50-\uFDC7\uFDF0-\uFDFB\uFE70-\uFEFC\U0001EE00-\U0001EEBB\u0D80-\u0DFF\u0900-\u097F\u0C80-\u0CFF\u0B80-\u0BFF\u0C00-\u0C7F\uAC00-\uD7AF\u1100-\u11FF\u3040-\u309F\u30A0-\u30FFー\u4E00-\u62FF\u6300-\u77FF\u7800-\u8CFF\u8D00-\u9FFF\u3400-\u4DBF\U00020000-\U000215FF\U00021600-\U000230FF\U00023100-\U000245FF\U00024600-\U000260FF\U00026100-\U000275FF\U00027600-\U000290FF\U00029100-\U0002A6DF\U0002A700-\U0002B73F\U0002B740-\U0002B81F\U0002B820-\U0002CEAF\U0002CEB0-\U0002EBEF\u2E80-\u2EFF\u2F00-\u2FDF\u2FF0-\u2FFF\u3000-\u303F\u31C0-\u31EF\u3200-\u32FF\u3300-\u33FF\uF900-\uFAFF\uFE30-\uFE4F\U0001F200-\U0001F2FF\U0002F800-\U0002FA1F\'"”“`‘´’‚,„»«「」『』()〔〕【】《》〈〉〈〉⟦⟧])|(?<=[A-Za-z\uFF21-\uFF3A\uFF41-\uFF5A\u00C0-\u00D6\u00D8-\u00F6\u00F8-\u00FF\u0100-\u017F\u0180-\u01BF\u01C4-\u024F\u2C60-\u2C7B\u2C7E\u2C7F\uA722-\uA76F\uA771-\uA787\uA78B-\uA78E\uA790-\uA7B9\uA7FA\uAB30-\uAB5A\uAB60-\uAB64\u0250-\u02AF\u1D00-\u1D25\u1D6B-\u1D77\u1D79-\u1D9A\u1E00-\u1EFFёа-яЁА-ЯәөүҗңһӘӨҮҖҢҺα-ωάέίόώήύΑ-ΩΆΈΊΌΏΉΎа-щюяіїєґА-ЩЮЯІЇЄҐѓѕјљњќѐѝЃЅЈЉЊЌЀЍ\u1200-\u137F\u0980-\u09FF\u0591-\u05F4\uFB1D-\uFB4F\u0620-\u064A\u066E-\u06D5\u06E5-\u06FF\u0750-\u077F\u08A0-\u08BD\uFB50-\uFBB1\uFBD3-\uFD3D\uFD50-\uFDC7\uFDF0-\uFDFB\uFE70-\uFEFC\U0001EE00-\U0001EEBB\u0D80-\u0DFF\u0900-\u097F\u0C80-\u0CFF\u0B80-\u0BFF\u0C00-\u0C7F\uAC00-\uD7AF\u1100-\u11FF\u3040-\u309F\u30A0-\u30FFー\u4E00-\u62FF\u6300-\u77FF\u7800-\u8CFF\u8D00-\u9FFF\u3400-\u4DBF\U00020000-\U000215FF\U00021600-\U000230FF\U00023100-\U000245FF\U00024600-\U000260FF\U00026100-\U000275FF\U00027600-\U000290FF\U00029100-\U0002A6DF\U0002A700-\U0002B73F\U0002B740-\U0002B81F\U0002B820-\U0002CEAF\U0002CEB0-\U0002EBEF\u2E80-\u2EFF\u2F00-\u2FDF\u2FF0-\u2FFF\u3000-\u303F\u31C0-\u31EF\u3200-\u32FF\u3300-\u33FF\uF900-\uFAFF\uFE30-\uFE4F\U0001F200-\U0001F2FF\U0002F800-\U0002FA1F]),(?=[A-Za-z\uFF21-\uFF3A\uFF41-\uFF5A\u00C0-\u00D6\u00D8-\u00F6\u00F8-\u00FF\u0100-\u017F\u0180-\u01BF\u01C4-\u024F\u2C60-\u2C7B\u2C7E\u2C7F\uA722-\uA76F\uA771-\uA787\uA78B-\uA78E\uA790-\uA7B9\uA7FA\uAB30-\uAB5A\uAB60-\uAB64\u0250-\u02AF\u1D00-\u1D25\u1D6B-\u1D77\u1D79-\u1D9A\u1E00-\u1EFFёа-яЁА-ЯәөүҗңһӘӨҮҖҢҺα-ωάέίόώήύΑ-ΩΆΈΊΌΏΉΎа-щюяіїєґА-ЩЮЯІЇЄҐѓѕјљњќѐѝЃЅЈЉЊЌЀЍ\u1200-\u137F\u0980-\u09FF\u0591-\u05F4\uFB1D-\uFB4F\u0620-\u064A\u066E-\u06D5\u06E5-\u06FF\u0750-\u077F\u08A0-\u08BD\uFB50-\uFBB1\uFBD3-\uFD3D\uFD50-\uFDC7\uFDF0-\uFDFB\uFE70-\uFEFC\U0001EE00-\U0001EEBB\u0D80-\u0DFF\u0900-\u097F\u0C80-\u0CFF\u0B80-\u0BFF\u0C00-\u0C7F\uAC00-\uD7AF\u1100-\u11FF\u3040-\u309F\u30A0-\u30FFー\u4E00-\u62FF\u6300-\u77FF\u7800-\u8CFF\u8D00-\u9FFF\u3400-\u4DBF\U00020000-\U000215FF\U00021600-\U000230FF\U00023100-\U000245FF\U00024600-\U000260FF\U00026100-\U000275FF\U00027600-\U000290FF\U00029100-\U0002A6DF\U0002A700-\U0002B73F\U0002B740-\U0002B81F\U0002B820-\U0002CEAF\U0002CEB0-\U0002EBEF\u2E80-\u2EFF\u2F00-\u2FDF\u2FF0-\u2FFF\u3000-\u303F\u31C0-\u31EF\u3200-\u32FF\u3300-\u33FF\uF900-\uFAFF\uFE30-\uFE4F\U0001F200-\U0001F2FF\U0002F800-\U0002FA1F])|(?<=[A-Za-z\uFF21-\uFF3A\uFF41-\uFF5A\u00C0-\u00D6\u00D8-\u00F6\u00F8-\u00FF\u0100-\u017F\u0180-\u01BF\u01C4-\u024F\u2C60-\u2C7B\u2C7E\u2C7F\uA722-\uA76F\uA771-\uA787\uA78B-\uA78E\uA790-\uA7B9\uA7FA\uAB30-\uAB5A\uAB60-\uAB64\u0250-\u02AF\u1D00-\u1D25\u1D6B-\u1D77\u1D79-\u1D9A\u1E00-\u1EFFёа-яЁА-ЯәөүҗңһӘӨҮҖҢҺα-ωάέίόώήύΑ-ΩΆΈΊΌΏΉΎа-щюяіїєґА-ЩЮЯІЇЄҐѓѕјљњќѐѝЃЅЈЉЊЌЀЍ\u1200-\u137F\u0980-\u09FF\u0591-\u05F4\uFB1D-\uFB4F\u0620-\u064A\u066E-\u06D5\u06E5-\u06FF\u0750-\u077F\u08A0-\u08BD\uFB50-\uFBB1\uFBD3-\uFD3D\uFD50-\uFDC7\uFDF0-\uFDFB\uFE70-\uFEFC\U0001EE00-\U0001EEBB\u0D80-\u0DFF\u0900-\u097F\u0C80-\u0CFF\u0B80-\u0BFF\u0C00-\u0C7F\uAC00-\uD7AF\u1100-\u11FF\u3040-\u309F\u30A0-\u30FFー\u4E00-\u62FF\u6300-\u77FF\u7800-\u8CFF\u8D00-\u9FFF\u3400-\u4DBF\U00020000-\U000215FF\U00021600-\U000230FF\U00023100-\U000245FF\U00024600-\U000260FF\U00026100-\U000275FF\U00027600-\U000290FF\U00029100-\U0002A6DF\U0002A700-\U0002B73F\U0002B740-\U0002B81F\U0002B820-\U0002CEAF\U0002CEB0-\U0002EBEF\u2E80-\u2EFF\u2F00-\u2FDF\u2FF0-\u2FFF\u3000-\u303F\u31C0-\u31EF\u3200-\u32FF\u3300-\u33FF\uF900-\uFAFF\uFE30-\uFE4F\U0001F200-\U0001F2FF\U0002F800-\U0002FA1F0-9])(?:-|–|—|--|---|——|~)(?=[A-Za-z\uFF21-\uFF3A\uFF41-\uFF5A\u00C0-\u00D6\u00D8-\u00F6\u00F8-\u00FF\u0100-\u017F\u0180-\u01BF\u01C4-\u024F\u2C60-\u2C7B\u2C7E\u2C7F\uA722-\uA76F\uA771-\uA787\uA78B-\uA78E\uA790-\uA7B9\uA7FA\uAB30-\uAB5A\uAB60-\uAB64\u0250-\u02AF\u1D00-\u1D25\u1D6B-\u1D77\u1D79-\u1D9A\u1E00-\u1EFFёа-яЁА-ЯәөүҗңһӘӨҮҖҢҺα-ωάέίόώήύΑ-ΩΆΈΊΌΏΉΎа-щюяіїєґА-ЩЮЯІЇЄҐѓѕјљњќѐѝЃЅЈЉЊЌЀЍ\u1200-\u137F\u0980-\u09FF\u0591-\u05F4\uFB1D-\uFB4F\u0620-\u064A\u066E-\u06D5\u06E5-\u06FF\u0750-\u077F\u08A0-\u08BD\uFB50-\uFBB1\uFBD3-\uFD3D\uFD50-\uFDC7\uFDF0-\uFDFB\uFE70-\uFEFC\U0001EE00-\U0001EEBB\u0D80-\u0DFF\u0900-\u097F\u0C80-\u0CFF\u0B80-\u0BFF\u0C00-\u0C7F\uAC00-\uD7AF\u1100-\u11FF\u3040-\u309F\u30A0-\u30FFー\u4E00-\u62FF\u6300-\u77FF\u7800-\u8CFF\u8D00-\u9FFF\u3400-\u4DBF\U00020000-\U000215FF\U00021600-\U000230FF\U00023100-\U000245FF\U00024600-\U000260FF\U00026100-\U000275FF\U00027600-\U000290FF\U00029100-\U0002A6DF\U0002A700-\U0002B73F\U0002B740-\U0002B81F\U0002B820-\U0002CEAF\U0002CEB0-\U0002EBEF\u2E80-\u2EFF\u2F00-\u2FDF\u2FF0-\u2FFF\u3000-\u303F\u31C0-\u31EF\u3200-\u32FF\u3300-\u33FF\uF900-\uFAFF\uFE30-\uFE4F\U0001F200-\U0001F2FF\U0002F800-\U0002FA1F])|(?<=[A-Za-z\uFF21-\uFF3A\uFF41-\uFF5A\u00C0-\u00D6\u00D8-\u00F6\u00F8-\u00FF\u0100-\u017F\u0180-\u01BF\u01C4-\u024F\u2C60-\u2C7B\u2C7E\u2C7F\uA722-\uA76F\uA771-\uA787\uA78B-\uA78E\uA790-\uA7B9\uA7FA\uAB30-\uAB5A\uAB60-\uAB64\u0250-\u02AF\u1D00-\u1D25\u1D6B-\u1D77\u1D79-\u1D9A\u1E00-\u1EFFёа-яЁА-ЯәөүҗңһӘӨҮҖҢҺα-ωάέίόώήύΑ-ΩΆΈΊΌΏΉΎа-щюяіїєґА-ЩЮЯІЇЄҐѓѕјљњќѐѝЃЅЈЉЊЌЀЍ\u1200-\u137F\u0980-\u09FF\u0591-\u05F4\uFB1D-\uFB4F\u0620-\u064A\u066E-\u06D5\u06E5-\u06FF\u0750-\u077F\u08A0-\u08BD\uFB50-\uFBB1\uFBD3-\uFD3D\uFD50-\uFDC7\uFDF0-\uFDFB\uFE70-\uFEFC\U0001EE00-\U0001EEBB\u0D80-\u0DFF\u0900-\u097F\u0C80-\u0CFF\u0B80-\u0BFF\u0C00-\u0C7F\uAC00-\uD7AF\u1100-\u11FF\u3040-\u309F\u30A0-\u30FFー\u4E00-\u62FF\u6300-\u77FF\u7800-\u8CFF\u8D00-\u9FFF\u3400-\u4DBF\U00020000-\U000215FF\U00021600-\U000230FF\U00023100-\U000245FF\U00024600-\U000260FF\U00026100-\U000275FF\U00027600-\U000290FF\U00029100-\U0002A6DF\U0002A700-\U0002B73F\U0002B740-\U0002B81F\U0002B820-\U0002CEAF\U0002CEB0-\U0002EBEF\u2E80-\u2EFF\u2F00-\u2FDF\u2FF0-\u2FFF\u3000-\u303F\u31C0-\u31EF\u3200-\u32FF\u3300-\u33FF\uF900-\uFAFF\uFE30-\uFE4F\U0001F200-\U0001F2FF\U0002F800-\U0002FA1F0-9])[:<>=/](?=[A-Za-z\uFF21-\uFF3A\uFF41-\uFF5A\u00C0-\u00D6\u00D8-\u00F6\u00F8-\u00FF\u0100-\u017F\u0180-\u01BF\u01C4-\u024F\u2C60-\u2C7B\u2C7E\u2C7F\uA722-\uA76F\uA771-\uA787\uA78B-\uA78E\uA790-\uA7B9\uA7FA\uAB30-\uAB5A\uAB60-\uAB64\u0250-\u02AF\u1D00-\u1D25\u1D6B-\u1D77\u1D79-\u1D9A\u1E00-\u1EFFёа-яЁА-ЯәөүҗңһӘӨҮҖҢҺα-ωάέίόώήύΑ-ΩΆΈΊΌΏΉΎа-щюяіїєґА-ЩЮЯІЇЄҐѓѕјљњќѐѝЃЅЈЉЊЌЀЍ\u1200-\u137F\u0980-\u09FF\u0591-\u05F4\uFB1D-\uFB4F\u0620-\u064A\u066E-\u06D5\u06E5-\u06FF\u0750-\u077F\u08A0-\u08BD\uFB50-\uFBB1\uFBD3-\uFD3D\uFD50-\uFDC7\uFDF0-\uFDFB\uFE70-\uFEFC\U0001EE00-\U0001EEBB\u0D80-\u0DFF\u0900-\u097F\u0C80-\u0CFF\u0B80-\u0BFF\u0C00-\u0C7F\uAC00-\uD7AF\u1100-\u11FF\u3040-\u309F\u30A0-\u30FFー\u4E00-\u62FF\u6300-\u77FF\u7800-\u8CFF\u8D00-\u9FFF\u3400-\u4DBF\U00020000-\U000215FF\U00021600-\U000230FF\U00023100-\U000245FF\U00024600-\U000260FF\U00026100-\U000275FF\U00027600-\U000290FF\U00029100-\U0002A6DF\U0002A700-\U0002B73F\U0002B740-\U0002B81F\U0002B820-\U0002CEAF\U0002CEB0-\U0002EBEF\u2E80-\u2EFF\u2F00-\u2FDF\u2FF0-\u2FFF\u3000-\u303F\u31C0-\u31EF\u3200-\u32FF\u3300-\u33FF\uF900-\uFAFF\uFE30-\uFE4F\U0001F200-\U0001F2FF\U0002F800-\U0002FA1F])�token_match��url_match�
2
+ ��A�
3
+ � ��A� �'��A�'�''��A�''�'Cause��A�'CauseC�because�'Cos��A�'CosC�because�'Coz��A�'CozC�because�'Cuz��A�'CuzC�because�'S��A�'SC�'s�'bout��A�'boutC�about�'cause��A�'causeC�because�'cos��A�'cosC�because�'coz��A�'cozC�because�'cuz��A�'cuzC�because�'d��A�'d�'em��A�'emC�them�'ll��A�'llC�will�'nuff��A�'nuffC�enough�'re��A�'reC�are�'s��A�'sC�'s�(*_*)��A�(*_*)�(-8��A�(-8�(-:��A�(-:�(-;��A�(-;�(-_-)��A�(-_-)�(._.)��A�(._.)�(:��A�(:�(;��A�(;�(=��A�(=�(>_<)��A�(>_<)�(^_^)��A�(^_^)�(o:��A�(o:�(¬_¬)��A�(¬_¬)�(ಠ_ಠ)��A�(ಠ_ಠ)�(╯°□°)╯︵┻━┻��A�(╯°□°)╯︵┻━┻�)-:��A�)-:�):��A�):�-_-��A�-_-�-__-��A�-__-�._.��A�._.�0.0��A�0.0�0.o��A�0.o�0_0��A�0_0�0_o��A�0_o�10a.m.��A�10�A�a.m.C�a.m.�10am��A�10�A�amC�a.m.�10p.m.��A�10�A�p.m.C�p.m.�10pm��A�10�A�pmC�p.m.�11a.m.��A�11�A�a.m.C�a.m.�11am��A�11�A�amC�a.m.�11p.m.��A�11�A�p.m.C�p.m.�11pm��A�11�A�pmC�p.m.�12a.m.��A�12�A�a.m.C�a.m.�12am��A�12�A�amC�a.m.�12p.m.��A�12�A�p.m.C�p.m.�12pm��A�12�A�pmC�p.m.�1a.m.��A�1�A�a.m.C�a.m.�1am��A�1�A�amC�a.m.�1p.m.��A�1�A�p.m.C�p.m.�1pm��A�1�A�pmC�p.m.�2a.m.��A�2�A�a.m.C�a.m.�2am��A�2�A�amC�a.m.�2p.m.��A�2�A�p.m.C�p.m.�2pm��A�2�A�pmC�p.m.�3a.m.��A�3�A�a.m.C�a.m.�3am��A�3�A�amC�a.m.�3p.m.��A�3�A�p.m.C�p.m.�3pm��A�3�A�pmC�p.m.�4a.m.��A�4�A�a.m.C�a.m.�4am��A�4�A�amC�a.m.�4p.m.��A�4�A�p.m.C�p.m.�4pm��A�4�A�pmC�p.m.�5a.m.��A�5�A�a.m.C�a.m.�5am��A�5�A�amC�a.m.�5p.m.��A�5�A�p.m.C�p.m.�5pm��A�5�A�pmC�p.m.�6a.m.��A�6�A�a.m.C�a.m.�6am��A�6�A�amC�a.m.�6p.m.��A�6�A�p.m.C�p.m.�6pm��A�6�A�pmC�p.m.�7a.m.��A�7�A�a.m.C�a.m.�7am��A�7�A�amC�a.m.�7p.m.��A�7�A�p.m.C�p.m.�7pm��A�7�A�pmC�p.m.�8)��A�8)�8-)��A�8-)�8-D��A�8-D�8D��A�8D�8a.m.��A�8�A�a.m.C�a.m.�8am��A�8�A�amC�a.m.�8p.m.��A�8�A�p.m.C�p.m.�8pm��A�8�A�pmC�p.m.�9a.m.��A�9�A�a.m.C�a.m.�9am��A�9�A�amC�a.m.�9p.m.��A�9�A�p.m.C�p.m.�9pm��A�9�A�pmC�p.m.�:'(��A�:'(�:')��A�:')�:'-(��A�:'-(�:'-)��A�:'-)�:(��A�:(�:((��A�:((�:(((��A�:(((�:()��A�:()�:)��A�:)�:))��A�:))�:)))��A�:)))�:*��A�:*�:-(��A�:-(�:-((��A�:-((�:-(((��A�:-(((�:-)��A�:-)�:-))��A�:-))�:-)))��A�:-)))�:-*��A�:-*�:-/��A�:-/�:-0��A�:-0�:-3��A�:-3�:->��A�:->�:-D��A�:-D�:-O��A�:-O�:-P��A�:-P�:-X��A�:-X�:-]��A�:-]�:-o��A�:-o�:-p��A�:-p�:-x��A�:-x�:-|��A�:-|�:-}��A�:-}�:/��A�:/�:0��A�:0�:1��A�:1�:3��A�:3�:>��A�:>�:D��A�:D�:O��A�:O�:P��A�:P�:X��A�:X�:]��A�:]�:o��A�:o�:o)��A�:o)�:p��A�:p�:x��A�:x�:|��A�:|�:}��A�:}�:’(��A�:’(�:’)��A�:’)�:’-(��A�:’-(�:’-)��A�:’-)�;)��A�;)�;-)��A�;-)�;-D��A�;-D�;D��A�;D�;_;��A�;_;�<.<��A�<.<�</3��A�</3�<3��A�<3�<33��A�<33�<333��A�<333�<space>��A�<space>�=(��A�=(�=)��A�=)�=/��A�=/�=3��A�=3�=D��A�=D�=[��A�=[�=]��A�=]�=|��A�=|�>.<��A�>.<�>.>��A�>.>�>:(��A�>:(�>:o��A�>:o�><(((*>��A�><(((*>�@_@��A�@_@�Adm.��A�Adm.�Ain't��A�Ai�A�n'tC�not�Aint��A�Ai�A�ntC�not�Ain’t��A�Ai�A�n’tC�not�Ak.��A�Ak.C�Alaska�Ala.��A�Ala.C�Alabama�Apr.��A�Apr.C�April�Aren't��A�AreC�are�A�n'tC�not�Arent��A�AreC�are�A�ntC�not�Aren’t��A�AreC�are�A�n’tC�not�Ariz.��A�Ariz.C�Arizona�Ark.��A�Ark.C�Arkansas�Aug.��A�Aug.C�August�Bros.��A�Bros.�C'mon��A�C'mC�come�A�on�C++��A�C++�Calif.��A�Calif.C�California�Can't��A�CaC�can�A�n'tC�not�Can't've��A�CaC�can�A�n'tC�not�A�'veC�have�Cannot��A�CanC�can�A�not�Cant��A�CaC�can�A�ntC�not�Cantve��A�CaC�can�A�ntC�not�A�veC�have�Can’t��A�CaC�can�A�n’tC�not�Can’t’ve��A�CaC�can�A�n’tC�not�A�’veC�have�Co.��A�Co.�Colo.��A�Colo.C�Colorado�Conn.��A�Conn.C�Connecticut�Corp.��A�Corp.�Could've��A�CouldC�could�A�'ve�Couldn't��A�CouldC�could�A�n'tC�not�Couldn't've��A�CouldC�could�A�n'tC�not�A�'veC�have�Couldnt��A�CouldC�could�A�ntC�not�Couldntve��A�CouldC�could�A�ntC�not�A�veC�have�Couldn’t��A�CouldC�could�A�n’tC�not�Couldn’t’ve��A�CouldC�could�A�n’tC�not�A�’veC�have�Couldve��A�CouldC�could�A�ve�Could’ve��A�CouldC�could�A�’ve�C’mon��A�C’mC�come�A�on�D.C.��A�D.C.�Daren't��A�DareC�dare�A�n'tC�not�Darent��A�DareC�dare�A�ntC�not�Daren’t��A�DareC�dare�A�n’tC�not�Dec.��A�Dec.C�December�Del.��A�Del.C�Delaware�Didn't��A�DidC�do�A�n'tC�not�Didn't've��A�DidC�do�A�n'tC�not�A�'veC�have�Didnt��A�DidC�do�A�ntC�not�Didntve��A�DidC�do�A�ntC�not�A�veC�have�Didn’t��A�DidC�do�A�n’tC�not�Didn’t’ve��A�DidC�do�A�n’tC�not�A�’veC�have�Doesn't��A�DoesC�does�A�n'tC�not�Doesn't've��A�DoesC�does�A�n'tC�not�A�'veC�have�Doesnt��A�DoesC�does�A�ntC�not�Doesntve��A�DoesC�does�A�ntC�not�A�veC�have�Doesn’t��A�DoesC�does�A�n’tC�not�Doesn’t’ve��A�DoesC�does�A�n’tC�not�A�’veC�have�Doin��A�DoinC�doing�Doin'��A�Doin'C�doing�Doin’��A�Doin’C�doing�Don't��A�DoC�do�A�n'tC�not�Don't've��A�DoC�do�A�n'tC�not�A�'veC�have�Dont��A�DoC�do�A�ntC�not�Dontve��A�DoC�do�A�ntC�not�A�veC�have�Don’t��A�DoC�do�A�n’tC�not�Don’t’ve��A�DoC�do�A�n’tC�not�A�’veC�have�Dr.��A�Dr.�E.G.��A�E.G.�E.g.��A�E.g.�Feb.��A�Feb.C�February�Fla.��A�Fla.C�Florida�Ga.��A�Ga.C�Georgia�Gen.��A�Gen.�Goin��A�GoinC�going�Goin'��A�Goin'C�going�Goin’��A�Goin’C�going�Gonna��A�GonC�going�A�naC�to�Gotta��A�GotC�got�A�taC�to�Gov.��A�Gov.�Hadn't��A�HadC�have�A�n'tC�not�Hadn't've��A�HadC�have�A�n'tC�not�A�'veC�have�Hadnt��A�HadC�have�A�ntC�not�Hadntve��A�HadC�have�A�ntC�not�A�veC�have�Hadn’t��A�HadC�have�A�n’tC�not�Hadn’t’ve��A�HadC�have�A�n’tC�not�A�’veC�have�Hasn't��A�HasC�has�A�n'tC�not�Hasnt��A�HasC�has�A�ntC�not�Hasn’t��A�HasC�has�A�n’tC�not�Haven't��A�HaveC�have�A�n'tC�not�Havent��A�HaveC�have�A�ntC�not�Haven’t��A�HaveC�have�A�n’tC�not�Havin��A�HavinC�having�Havin'��A�Havin'C�having�Havin’��A�Havin’C�having�He'd��A�HeC�he�A�'dC�'d�He'd've��A�HeC�he�A�'dC�would�A�'veC�have�He'll��A�HeC�he�A�'llC�will�He'll've��A�HeC�he�A�'llC�will�A�'veC�have�He's��A�HeC�he�A�'sC�'s�Hed��A�HeC�he�A�dC�'d�Hedve��A�HeC�he�A�dC�would�A�veC�have�Hellve��A�HeC�he�A�llC�will�A�veC�have�Hes��A�HeC�he�A�s�He’d��A�HeC�he�A�’dC�'d�He’d’ve��A�HeC�he�A�’dC�would�A�’veC�have�He’ll��A�HeC�he�A�’llC�will�He’ll’ve��A�HeC�he�A�’llC�will�A�’veC�have�He’s��A�HeC�he�A�’sC�'s�How'd��A�HowC�how�A�'dC�'d�How'd've��A�HowC�how�A�'dC�would�A�'veC�have�How'd'y��A�HowC�how�A�'d�A�'yC�you�How'll��A�HowC�how�A�'llC�will�How'll've��A�HowC�how�A�'llC�will�A�'veC�have�How're��A�HowC�how�A�'reC�are�How's��A�HowC�how�A�'sC�'s�How've��A�HowC�how�A�'ve�Howd��A�HowC�how�A�dC�'d�Howdve��A�HowC�how�A�dC�would�A�veC�have�Howll��A�HowC�how�A�llC�will�Howllve��A�HowC�how�A�llC�will�A�veC�have�Howre��A�HowC�how�A�reC�are�Hows��A�HowC�how�A�s�Howve��A�How�A�veC�have�How’d��A�HowC�how�A�’dC�'d�How’d’ve��A�HowC�how�A�’dC�would�A�’veC�have�How’d’y��A�HowC�how�A�’d�A�’yC�you�How’ll��A�HowC�how�A�’llC�will�How’ll’ve��A�HowC�how�A�’llC�will�A�’veC�have�How’re��A�HowC�how�A�’reC�are�How’s��A�HowC�how�A�’sC�'s�How’ve��A�HowC�how�A�’ve�I'd��A�IC�i�A�'dC�'d�I'd've��A�IC�i�A�'dC�would�A�'veC�have�I'll��A�IC�i�A�'llC�will�I'll've��A�IC�i�A�'llC�will�A�'veC�have�I'm��A�IC�i�A�'mC�am�I'ma��A�IC�i�A�'mC�am�A�aC�gonna�I've��A�IC�i�A�'veC�have�I.E.��A�I.E.�I.e.��A�I.e.�Ia.��A�Ia.C�Iowa�Id��A�IC�i�A�dC�'d�Id.��A�Id.C�Idaho�Idve��A�IC�i�A�dC�would�A�veC�have�Ill.��A�Ill.C�Illinois�Illve��A�IC�i�A�llC�will�A�veC�have�Im��A�IC�i�A�m�Ima��A�IC�i�A�mC�am�A�aC�gonna�Inc.��A�Inc.�Ind.��A�Ind.C�Indiana�Isn't��A�IsC�is�A�n'tC�not�Isnt��A�IsC�is�A�ntC�not�Isn’t��A�IsC�is�A�n’tC�not�It'd��A�ItC�it�A�'dC�'d�It'd've��A�ItC�it�A�'dC�would�A�'veC�have�It'll��A�ItC�it�A�'llC�will�It'll've��A�ItC�it�A�'llC�will�A�'veC�have�It's��A�ItC�it�A�'sC�'s�Itd��A�ItC�it�A�dC�'d�Itdve��A�ItC�it�A�dC�would�A�veC�have�Itll��A�ItC�it�A�llC�will�Itllve��A�ItC�it�A�llC�will�A�veC�have�It’d��A�ItC�it�A�’dC�'d�It’d’ve��A�ItC�it�A�’dC�would�A�’veC�have�It’ll��A�ItC�it�A�’llC�will�It’ll’ve��A�ItC�it�A�’llC�will�A�’veC�have�It’s��A�ItC�it�A�’sC�'s�Ive��A�IC�i�A�veC�have�I’d��A�IC�i�A�’dC�'d�I’d’ve��A�IC�i�A�’dC�would�A�’veC�have�I’ll��A�IC�i�A�’llC�will�I’ll’ve��A�IC�i�A�’llC�will�A�’veC�have�I’m��A�IC�i�A�’mC�am�I’ma��A�IC�i�A�’mC�am�A�aC�gonna�I’ve��A�IC�i�A�’veC�have�Jan.��A�Jan.C�January�Jr.��A�Jr.�Jul.��A�Jul.C�July�Jun.��A�Jun.C�June�Kan.��A�Kan.C�Kansas�Kans.��A�Kans.C�Kansas�Ky.��A�Ky.C�Kentucky�La.��A�La.C�Louisiana�Let's��A�LetC�let�A�'sC�us�Let’s��A�LetC�let�A�’sC�us�Lovin��A�LovinC�loving�Lovin'��A�Lovin'C�loving�Lovin’��A�Lovin’C�loving�Ltd.��A�Ltd.�Ma'am��A�Ma'amC�madam�Mar.��A�Mar.C�March�Mass.��A�Mass.C�Massachusetts�Mayn't��A�MayC�may�A�n'tC�not�Mayn't've��A�MayC�may�A�n'tC�not�A�'veC�have�Maynt��A�MayC�may�A�ntC�not�Mayntve��A�MayC�may�A�ntC�not�A�veC�have�Mayn’t��A�MayC�may�A�n’tC�not�Mayn’t’ve��A�MayC�may�A�n’tC�not�A�’veC�have�Ma’am��A�Ma’amC�madam�Md.��A�Md.�Messrs.��A�Messrs.�Mich.��A�Mich.C�Michigan�Might've��A�MightC�might�A�'ve�Mightn't��A�MightC�might�A�n'tC�not�Mightn't've��A�MightC�might�A�n'tC�not�A�'veC�have�Mightnt��A�MightC�might�A�ntC�not�Mightntve��A�MightC�might�A�ntC�not�A�veC�have�Mightn’t��A�MightC�might�A�n’tC�not�Mightn’t’ve��A�MightC�might�A�n’tC�not�A�’veC�have�Mightve��A�MightC�might�A�ve�Might’ve��A�MightC�might�A�’ve�Minn.��A�Minn.C�Minnesota�Miss.��A�Miss.C�Mississippi�Mo.��A�Mo.�Mont.��A�Mont.�Mr.��A�Mr.�Mrs.��A�Mrs.�Ms.��A�Ms.�Mt.��A�Mt.C�Mount�Must've��A�MustC�must�A�'ve�Mustn't��A�MustC�must�A�n'tC�not�Mustn't've��A�MustC�must�A�n'tC�not�A�'veC�have�Mustnt��A�MustC�must�A�ntC�not�Mustntve��A�MustC�must�A�ntC�not�A�veC�have�Mustn’t��A�MustC�must�A�n’tC�not�Mustn’t’ve��A�MustC�must�A�n’tC�not�A�’veC�have�Mustve��A�MustC�must�A�ve�Must’ve��A�MustC�must�A�’ve�N.C.��A�N.C.C�North Carolina�N.D.��A�N.D.C�North Dakota�N.H.��A�N.H.C�New Hampshire�N.J.��A�N.J.C�New Jersey�N.M.��A�N.M.C�New Mexico�N.Y.��A�N.Y.C�New York�Neb.��A�Neb.C�Nebraska�Nebr.��A�Nebr.C�Nebraska�Needn't��A�NeedC�need�A�n'tC�not�Needn't've��A�NeedC�need�A�n'tC�not�A�'veC�have�Neednt��A�NeedC�need�A�ntC�not�Needntve��A�NeedC�need�A�ntC�not�A�veC�have�Needn’t��A�NeedC�need�A�n’tC�not�Needn’t’ve��A�NeedC�need�A�n’tC�not�A�’veC�have�Nev.��A�Nev.C�Nevada�Not've��A�NotC�not�A�'veC�have�Nothin��A�NothinC�nothing�Nothin'��A�Nothin'C�nothing�Nothin’��A�Nothin’C�nothing�Notve��A�NotC�not�A�veC�have�Not’ve��A�NotC�not�A�’veC�have�Nov.��A�Nov.C�November�Nuthin��A�NuthinC�nothing�Nuthin'��A�Nuthin'C�nothing�Nuthin’��A�Nuthin’C�nothing�O'clock��A�O'clockC�o'clock�O.O��A�O.O�O.o��A�O.o�O_O��A�O_O�O_o��A�O_o�Oct.��A�Oct.C�October�Okla.��A�Okla.C�Oklahoma�Ol��A�OlC�old�Ol'��A�Ol'C�old�Ol’��A�Ol’C�old�Ore.��A�Ore.C�Oregon�Oughtn't��A�OughtC�ought�A�n'tC�not�Oughtn't've��A�OughtC�ought�A�n'tC�not�A�'veC�have�Oughtnt��A�OughtC�ought�A�ntC�not�Oughtntve��A�OughtC�ought�A�ntC�not�A�veC�have�Oughtn’t��A�OughtC�ought�A�n’tC�not�Oughtn’t’ve��A�OughtC�ought�A�n’tC�not�A�’veC�have�O’clock��A�O’clockC�o'clock�Pa.��A�Pa.C�Pennsylvania�Ph.D.��A�Ph.D.�Prof.��A�Prof.�Rep.��A�Rep.�Rev.��A�Rev.�S.C.��A�S.C.C�South Carolina�Sen.��A�Sen.�Sep.��A�Sep.C�September�Sept.��A�Sept.C�September�Shan't��A�ShaC�shall�A�n'tC�not�Shan't've��A�ShaC�shall�A�n'tC�not�A�'veC�have�Shant��A�ShaC�shall�A�ntC�not�Shantve��A�ShaC�shall�A�ntC�not�A�veC�have�Shan’t��A�ShaC�shall�A�n’tC�not�Shan’t’ve��A�ShaC�shall�A�n’tC�not�A�’veC�have�She'd��A�SheC�she�A�'dC�'d�She'd've��A�SheC�she�A�'dC�would�A�'veC�have�She'll��A�SheC�she�A�'llC�will�She'll've��A�SheC�she�A�'llC�will�A�'veC�have�She's��A�SheC�she�A�'sC�'s�Shedve��A�SheC�she�A�dC�would�A�veC�have�Shellve��A�SheC�she�A�llC�will�A�veC�have�Shes��A�SheC�she�A�s�She’d��A�SheC�she�A�’dC�'d�She’d’ve��A�SheC�she�A�’dC�would�A�’veC�have�She’ll��A�SheC�she�A�’llC�will�She’ll’ve��A�SheC�she�A�’llC�will�A�’veC�have�She’s��A�SheC�she�A�’sC�'s�Should've��A�ShouldC�should�A�'ve�Shouldn't��A�ShouldC�should�A�n'tC�not�Shouldn't've��A�ShouldC�should�A�n'tC�not�A�'veC�have�Shouldnt��A�ShouldC�should�A�ntC�not�Shouldntve��A�ShouldC�should�A�ntC�not�A�veC�have�Shouldn’t��A�ShouldC�should�A�n’tC�not�Shouldn’t’ve��A�ShouldC�should�A�n’tC�not�A�’veC�have�Shouldve��A�ShouldC�should�A�ve�Should’ve��A�ShouldC�should�A�’ve�Somethin��A�SomethinC�something�Somethin'��A�Somethin'C�something�Somethin’��A�Somethin’C�something�St.��A�St.�Tenn.��A�Tenn.C�Tennessee�That'd��A�ThatC�that�A�'dC�'d�That'd've��A�ThatC�that�A�'dC�would�A�'veC�have�That'll��A�ThatC�that�A�'llC�will�That'll've��A�ThatC�that�A�'llC�will�A�'veC�have�That's��A�ThatC�that�A�'sC�'s�Thatd��A�ThatC�that�A�dC�'d�Thatdve��A�ThatC�that�A�dC�would�A�veC�have�Thatll��A�ThatC�that�A�llC�will�Thatllve��A�ThatC�that�A�llC�will�A�veC�have�Thats��A�ThatC�that�A�s�That’d��A�ThatC�that�A�’dC�'d�That’d’ve��A�ThatC�that�A�’dC�would�A�’veC�have�That’ll��A�ThatC�that�A�’llC�will�That’ll’ve��A�ThatC�that�A�’llC�will�A�’veC�have�That’s��A�ThatC�that�A�’sC�'s�There'd��A�ThereC�there�A�'dC�'d�There'd've��A�ThereC�there�A�'dC�would�A�'veC�have�There'll��A�ThereC�there�A�'llC�will�There'll've��A�ThereC�there�A�'llC�will�A�'veC�have�There're��A�ThereC�there�A�'reC�are�There's��A�ThereC�there�A�'sC�'s�There've��A�ThereC�there�A�'ve�Thered��A�ThereC�there�A�dC�'d�Theredve��A�ThereC�there�A�dC�would�A�veC�have�Therell��A�ThereC�there�A�llC�will�Therellve��A�ThereC�there�A�llC�will�A�veC�have�Therere��A�ThereC�there�A�reC�are�Theres��A�ThereC�there�A�s�Thereve��A�There�A�veC�have�There’d��A�ThereC�there�A�’dC�'d�There’d’ve��A�ThereC�there�A�’dC�would�A�’veC�have�There’ll��A�ThereC�there�A�’llC�will�There’ll’ve��A�ThereC�there�A�’llC�will�A�’veC�have�There’re��A�ThereC�there�A�’reC�are�There’s��A�ThereC�there�A�’sC�'s�There’ve��A�ThereC�there�A�’ve�These'd��A�TheseC�these�A�'dC�'d�These'd've��A�TheseC�these�A�'dC�would�A�'veC�have�These'll��A�TheseC�these�A�'llC�will�These'll've��A�TheseC�these�A�'llC�will�A�'veC�have�These're��A�TheseC�these�A�'reC�are�These've��A�TheseC�these�A�'ve�Thesed��A�TheseC�these�A�dC�'d�Thesedve��A�TheseC�these�A�dC�would�A�veC�have�Thesell��A�TheseC�these�A�llC�will�Thesellve��A�TheseC�these�A�llC�will�A�veC�have�Thesere��A�TheseC�these�A�reC�are�Theseve��A�These�A�veC�have�These’d��A�TheseC�these�A�’dC�'d�These’d’ve��A�TheseC�these�A�’dC�would�A�’veC�have�These’ll��A�TheseC�these�A�’llC�will�These’ll’ve��A�TheseC�these�A�’llC�will�A�’veC�have�These’re��A�TheseC�these�A�’reC�are�These’ve��A�TheseC�these�A�’ve�They'd��A�TheyC�they�A�'dC�'d�They'd've��A�TheyC�they�A�'dC�would�A�'veC�have�They'll��A�TheyC�they�A�'llC�will�They'll've��A�TheyC�they�A�'llC�will�A�'veC�have�They're��A�TheyC�they�A�'reC�are�They've��A�TheyC�they�A�'veC�have�Theyd��A�TheyC�they�A�dC�'d�Theydve��A�TheyC�they�A�dC�would�A�veC�have�Theyll��A�TheyC�they�A�llC�will�Theyllve��A�TheyC�they�A�llC�will�A�veC�have�Theyre��A�TheyC�they�A�reC�are�Theyve��A�TheyC�they�A�veC�have�They’d��A�TheyC�they�A�’dC�'d�They’d’ve��A�TheyC�they�A�’dC�would�A�’veC�have�They’ll��A�TheyC�they�A�’llC�will�They’ll’ve��A�TheyC�they�A�’llC�will�A�’veC�have�They’re��A�TheyC�they�A�’reC�are�They’ve��A�TheyC�they�A�’veC�have�This'd��A�ThisC�this�A�'dC�'d�This'd've��A�ThisC�this�A�'dC�would�A�'veC�have�This'll��A�ThisC�this�A�'llC�will�This'll've��A�ThisC�this�A�'llC�will�A�'veC�have�This's��A�ThisC�this�A�'sC�'s�Thisd��A�ThisC�this�A�dC�'d�Thisdve��A�ThisC�this�A�dC�would�A�veC�have�Thisll��A�ThisC�this�A�llC�will�Thisllve��A�ThisC�this�A�llC�will�A�veC�have�Thiss��A�ThisC�this�A�s�This’d��A�ThisC�this�A�’dC�'d�This’d’ve��A�ThisC�this�A�’dC�would�A�’veC�have�This’ll��A�ThisC�this�A�’llC�will�This’ll’ve��A�ThisC�this�A�’llC�will�A�’veC�have�This’s��A�ThisC�this�A�’sC�'s�Those'd��A�ThoseC�those�A�'dC�'d�Those'd've��A�ThoseC�those�A�'dC�would�A�'veC�have�Those'll��A�ThoseC�those�A�'llC�will�Those'll've��A�ThoseC�those�A�'llC�will�A�'veC�have�Those're��A�ThoseC�those�A�'reC�are�Those've��A�ThoseC�those�A�'ve�Thosed��A�ThoseC�those�A�dC�'d�Thosedve��A�ThoseC�those�A�dC�would�A�veC�have�Thosell��A�ThoseC�those�A�llC�will�Thosellve��A�ThoseC�those�A�llC�will�A�veC�have�Thosere��A�ThoseC�those�A�reC�are�Thoseve��A�Those�A�veC�have�Those’d��A�ThoseC�those�A�’dC�'d�Those’d’ve��A�ThoseC�those�A�’dC�would�A�’veC�have�Those’ll��A�ThoseC�those�A�’llC�will�Those’ll’ve��A�ThoseC�those�A�’llC�will�A�’veC�have�Those’re��A�ThoseC�those�A�’reC�are�Those’ve��A�ThoseC�those�A�’ve�V.V��A�V.V�V_V��A�V_V�Va.��A�Va.C�Virginia�Wash.��A�Wash.C�Washington�Wasn't��A�WasC�was�A�n'tC�not�Wasnt��A�WasC�was�A�ntC�not�Wasn’t��A�WasC�was�A�n’tC�not�We'd��A�WeC�we�A�'dC�'d�We'd've��A�WeC�we�A�'dC�would�A�'veC�have�We'll��A�WeC�we�A�'llC�will�We'll've��A�WeC�we�A�'llC�will�A�'veC�have�We're��A�WeC�we�A�'reC�are�We've��A�WeC�we�A�'veC�have�Wed��A�WeC�we�A�dC�'d�Wedve��A�WeC�we�A�dC�would�A�veC�have�Wellve��A�WeC�we�A�llC�will�A�veC�have�Weren't��A�WereC�were�A�n'tC�not�Werent��A�WereC�were�A�ntC�not�Weren’t��A�WereC�were�A�n’tC�not�Weve��A�WeC�we�A�veC�have�We’d��A�WeC�we�A�’dC�'d�We’d’ve��A�WeC�we�A�’dC�would�A�’veC�have�We’ll��A�WeC�we�A�’llC�will�We’ll’ve��A�WeC�we�A�’llC�will�A�’veC�have�We’re��A�WeC�we�A�’reC�are�We’ve��A�WeC�we�A�’veC�have�What'd��A�WhatC�what�A�'dC�'d�What'd've��A�WhatC�what�A�'dC�would�A�'veC�have�What'll��A�WhatC�what�A�'llC�will�What'll've��A�WhatC�what�A�'llC�will�A�'veC�have�What're��A�WhatC�what�A�'reC�are�What's��A�WhatC�what�A�'sC�'s�What've��A�WhatC�what�A�'ve�Whatd��A�WhatC�what�A�dC�'d�Whatdve��A�WhatC�what�A�dC�would�A�veC�have�Whatll��A�WhatC�what�A�llC�will�Whatllve��A�WhatC�what�A�llC�will�A�veC�have�Whatre��A�WhatC�what�A�reC�are�Whats��A�WhatC�what�A�s�Whatve��A�What�A�veC�have�What’d��A�WhatC�what�A�’dC�'d�What’d’ve��A�WhatC�what�A�’dC�would�A�’veC�have�What’ll��A�WhatC�what�A�’llC�will�What’ll’ve��A�WhatC�what�A�’llC�will�A�’veC�have�What’re��A�WhatC�what�A�’reC�are�What’s��A�WhatC�what�A�’sC�'s�What’ve��A�WhatC�what�A�’ve�When'd��A�WhenC�when�A�'dC�'d�When'd've��A�WhenC�when�A�'dC�would�A�'veC�have�When'll��A�WhenC�when�A�'llC�will�When'll've��A�WhenC�when�A�'llC�will�A�'veC�have�When're��A�WhenC�when�A�'reC�are�When's��A�WhenC�when�A�'sC�'s�When've��A�WhenC�when�A�'ve�Whend��A�WhenC�when�A�dC�'d�Whendve��A�WhenC�when�A�dC�would�A�veC�have�Whenll��A�WhenC�when�A�llC�will�Whenllve��A�WhenC�when�A�llC�will�A�veC�have�Whenre��A�WhenC�when�A�reC�are�Whens��A�WhenC�when�A�s�Whenve��A�When�A�veC�have�When’d��A�WhenC�when�A�’dC�'d�When’d’ve��A�WhenC�when�A�’dC�would�A�’veC�have�When’ll��A�WhenC�when�A�’llC�will�When’ll’ve��A�WhenC�when�A�’llC�will�A�’veC�have�When’re��A�WhenC�when�A�’reC�are�When’s��A�WhenC�when�A�’sC�'s�When’ve��A�WhenC�when�A�’ve�Where'd��A�WhereC�where�A�'dC�'d�Where'd've��A�WhereC�where�A�'dC�would�A�'veC�have�Where'll��A�WhereC�where�A�'llC�will�Where'll've��A�WhereC�where�A�'llC�will�A�'veC�have�Where're��A�WhereC�where�A�'reC�are�Where's��A�WhereC�where�A�'sC�'s�Where've��A�WhereC�where�A�'ve�Whered��A�WhereC�where�A�dC�'d�Wheredve��A�WhereC�where�A�dC�would�A�veC�have�Wherell��A�WhereC�where�A�llC�will�Wherellve��A�WhereC�where�A�llC�will�A�veC�have�Wherere��A�WhereC�where�A�reC�are�Wheres��A�WhereC�where�A�s�Whereve��A�Where�A�veC�have�Where’d��A�WhereC�where�A�’dC�'d�Where’d’ve��A�WhereC�where�A�’dC�would�A�’veC�have�Where’ll��A�WhereC�where�A�’llC�will�Where’ll’ve��A�WhereC�where�A�’llC�will�A�’veC�have�Where’re��A�WhereC�where�A�’reC�are�Where’s��A�WhereC�where�A�’sC�'s�Where’ve��A�WhereC�where�A�’ve�Who'd��A�WhoC�who�A�'dC�'d�Who'd've��A�WhoC�who�A�'dC�would�A�'veC�have�Who'll��A�WhoC�who�A�'llC�will�Who'll've��A�WhoC�who�A�'llC�will�A�'veC�have�Who're��A�WhoC�who�A�'reC�are�Who's��A�WhoC�who�A�'sC�'s�Who've��A�WhoC�who�A�'ve�Whod��A�WhoC�who�A�dC�'d�Whodve��A�WhoC�who�A�dC�would�A�veC�have�Wholl��A�WhoC�who�A�llC�will�Whollve��A�WhoC�who�A�llC�will�A�veC�have�Whos��A�WhoC�who�A�s�Whove��A�Who�A�veC�have�Who’d��A�WhoC�who�A�’dC�'d�Who’d’ve��A�WhoC�who�A�’dC�would�A�’veC�have�Who’ll��A�WhoC�who�A�’llC�will�Who’ll’ve��A�WhoC�who�A�’llC�will�A�’veC�have�Who’re��A�WhoC�who�A�’reC�are�Who’s��A�WhoC�who�A�’sC�'s�Who’ve��A�WhoC�who�A�’ve�Why'd��A�WhyC�why�A�'dC�'d�Why'd've��A�WhyC�why�A�'dC�would�A�'veC�have�Why'll��A�WhyC�why�A�'llC�will�Why'll've��A�WhyC�why�A�'llC�will�A�'veC�have�Why're��A�WhyC�why�A�'reC�are�Why's��A�WhyC�why�A�'sC�'s�Why've��A�WhyC�why�A�'ve�Whyd��A�WhyC�why�A�dC�'d�Whydve��A�WhyC�why�A�dC�would�A�veC�have�Whyll��A�WhyC�why�A�llC�will�Whyllve��A�WhyC�why�A�llC�will�A�veC�have�Whyre��A�WhyC�why�A�reC�are�Whys��A�WhyC�why�A�s�Whyve��A�Why�A�veC�have�Why’d��A�WhyC�why�A�’dC�'d�Why’d’ve��A�WhyC�why�A�’dC�would�A�’veC�have�Why’ll��A�WhyC�why�A�’llC�will�Why’ll’ve��A�WhyC�why�A�’llC�will�A�’veC�have�Why’re��A�WhyC�why�A�’reC�are�Why’s��A�WhyC�why�A�’sC�'s�Why’ve��A�WhyC�why�A�’ve�Wis.��A�Wis.C�Wisconsin�Won't��A�WoC�will�A�n'tC�not�Won't've��A�WoC�will�A�n'tC�not�A�'veC�have�Wont��A�WoC�will�A�ntC�not�Wontve��A�WoC�will�A�ntC�not�A�veC�have�Won’t��A�WoC�will�A�n’tC�not�Won’t’ve��A�WoC�will�A�n’tC�not�A�’veC�have�Would've��A�WouldC�would�A�'ve�Wouldn't��A�WouldC�would�A�n'tC�not�Wouldn't've��A�WouldC�would�A�n'tC�not�A�'veC�have�Wouldnt��A�WouldC�would�A�ntC�not�Wouldntve��A�WouldC�would�A�ntC�not�A�veC�have�Wouldn’t��A�WouldC�would�A�n’tC�not�Wouldn’t’ve��A�WouldC�would�A�n’tC�not�A�’veC�have�Wouldve��A�WouldC�would�A�ve�Would’ve��A�WouldC�would�A�’ve�XD��A�XD�XDD��A�XDD�You'd��A�YouC�you�A�'dC�'d�You'd've��A�YouC�you�A�'dC�would�A�'veC�have�You'll��A�YouC�you�A�'llC�will�You'll've��A�YouC�you�A�'llC�will�A�'veC�have�You're��A�YouC�you�A�'reC�are�You've��A�YouC�you�A�'veC�have�Youd��A�YouC�you�A�dC�'d�Youdve��A�YouC�you�A�dC�would�A�veC�have�Youll��A�YouC�you�A�llC�will�Youllve��A�YouC�you�A�llC�will�A�veC�have�Youre��A�YouC�you�A�reC�are�Youve��A�YouC�you�A�veC�have�You’d��A�YouC�you�A�’dC�'d�You’d’ve��A�YouC�you�A�’dC�would�A�’veC�have�You’ll��A�YouC�you�A�’llC�will�You’ll’ve��A�YouC�you�A�’llC�will�A�’veC�have�You’re��A�YouC�you�A�’reC�are�You’ve��A�YouC�you�A�’veC�have�[-:��A�[-:�[:��A�[:�[=��A�[=�\")��A�\")�\n��A�\n�\t��A�\t�]=��A�]=�^_^��A�^_^�^__^��A�^__^�^___^��A�^___^�a.��A�a.�a.m.��A�a.m.�ain't��A�ai�A�n'tC�not�aint��A�ai�A�ntC�not�ain’t��A�ai�A�n’tC�not�and/or��A�and/orC�and/or�aren't��A�areC�are�A�n'tC�not�arent��A�areC�are�A�ntC�not�aren’t��A�areC�are�A�n’tC�not�b.��A�b.�c'mon��A�c'mC�come�A�on�c.��A�c.�can't��A�caC�can�A�n'tC�not�can't've��A�caC�can�A�n'tC�not�A�'veC�have�cannot��A�can�A�not�cant��A�caC�can�A�ntC�not�cantve��A�caC�can�A�ntC�not�A�veC�have�can’t��A�caC�can�A�n’tC�not�can’t’ve��A�caC�can�A�n’tC�not�A�’veC�have�co.��A�co.�could've��A�couldC�could�A�'ve�couldn't��A�couldC�could�A�n'tC�not�couldn't've��A�couldC�could�A�n'tC�not�A�'veC�have�couldnt��A�couldC�could�A�ntC�not�couldntve��A�couldC�could�A�ntC�not�A�veC�have�couldn’t��A�couldC�could�A�n’tC�not�couldn’t’ve��A�couldC�could�A�n’tC�not�A�’veC�have�couldve��A�couldC�could�A�ve�could’ve��A�couldC�could�A�’ve�c’mon��A�c’mC�come�A�on�d.��A�d.�daren't��A�dareC�dare�A�n'tC�not�darent��A�dareC�dare�A�ntC�not�daren’t��A�dareC�dare�A�n’tC�not�didn't��A�didC�do�A�n'tC�not�didn't've��A�didC�do�A�n'tC�not�A�'veC�have�didnt��A�didC�do�A�ntC�not�didntve��A�didC�do�A�ntC�not�A�veC�have�didn’t��A�didC�do�A�n’tC�not�didn’t’ve��A�didC�do�A�n’tC�not�A�’veC�have�doesn't��A�doesC�does�A�n'tC�not�doesn't've��A�doesC�does�A�n'tC�not�A�'veC�have�doesnt��A�doesC�does�A�ntC�not�doesntve��A�doesC�does�A�ntC�not�A�veC�have�doesn’t��A�doesC�does�A�n’tC�not�doesn’t’ve��A�doesC�does�A�n’tC�not�A�’veC�have�doin��A�doinC�doing�doin'��A�doin'C�doing�doin’��A�doin’C�doing�don't��A�doC�do�A�n'tC�not�don't've��A�doC�do�A�n'tC�not�A�'veC�have�dont��A�doC�do�A�ntC�not�dontve��A�doC�do�A�ntC�not�A�veC�have�don’t��A�doC�do�A�n’tC�not�don’t’ve��A�doC�do�A�n’tC�not�A�’veC�have�e.��A�e.�e.g.��A�e.g.�em��A�emC�them�f.��A�f.�g.��A�g.�goin��A�goinC�going�goin'��A�goin'C�going�goin’��A�goin’C�going�gonna��A�gonC�going�A�naC�to�gotta��A�got�A�taC�to�h.��A�h.�hadn't��A�hadC�have�A�n'tC�not�hadn't've��A�hadC�have�A�n'tC�not�A�'veC�have�hadnt��A�hadC�have�A�ntC�not�hadntve��A�hadC�have�A�ntC�not�A�veC�have�hadn’t��A�hadC�have�A�n’tC�not�hadn’t’ve��A�hadC�have�A�n’tC�not�A�’veC�have�hasn't��A�hasC�has�A�n'tC�not�hasnt��A�hasC�has�A�ntC�not�hasn’t��A�hasC�has�A�n’tC�not�haven't��A�haveC�have�A�n'tC�not�havent��A�haveC�have�A�ntC�not�haven’t��A�haveC�have�A�n’tC�not�havin��A�havinC�having�havin'��A�havin'C�having�havin’��A�havin’C�having�he'd��A�heC�he�A�'dC�'d�he'd've��A�heC�he�A�'dC�would�A�'veC�have�he'll��A�heC�he�A�'llC�will�he'll've��A�heC�he�A�'llC�will�A�'veC�have�he's��A�heC�he�A�'sC�'s�hed��A�heC�he�A�dC�'d�hedve��A�heC�he�A�dC�would�A�veC�have�hellve��A�heC�he�A�llC�will�A�veC�have�hes��A�heC�he�A�s�he’d��A�heC�he�A�’dC�'d�he’d’ve��A�heC�he�A�’dC�would�A�’veC�have�he’ll��A�heC�he�A�’llC�will�he’ll’ve��A�heC�he�A�’llC�will�A�’veC�have�he’s��A�heC�he�A�’sC�'s�how'd��A�howC�how�A�'dC�'d�how'd've��A�howC�how�A�'dC�would�A�'veC�have�how'd'y��A�how�A�'d�A�'yC�you�how'll��A�howC�how�A�'llC�will�how'll've��A�howC�how�A�'llC�will�A�'veC�have�how're��A�howC�how�A�'reC�are�how's��A�howC�how�A�'sC�'s�how've��A�howC�how�A�'ve�howd��A�howC�how�A�dC�'d�howdve��A�howC�how�A�dC�would�A�veC�have�howll��A�howC�how�A�llC�will�howllve��A�howC�how�A�llC�will�A�veC�have�howre��A�howC�how�A�reC�are�hows��A�howC�how�A�s�howve��A�how�A�veC�have�how’d��A�howC�how�A�’dC�'d�how’d’ve��A�howC�how�A���dC�would�A�’veC�have�how’d’y��A�how�A�’d�A�’yC�you�how’ll��A�howC�how�A�’llC�will�how’ll’ve��A�howC�how�A�’llC�will�A�’veC�have�how’re��A�howC�how�A�’reC�are�how’s��A�howC�how�A�’sC�'s�how’ve��A�howC�how�A�’ve�i'd��A�iC�i�A�'dC�'d�i'd've��A�iC�i�A�'dC�would�A�'veC�have�i'll��A�iC�i�A�'llC�will�i'll've��A�iC�i�A�'llC�will�A�'veC�have�i'm��A�iC�i�A�'mC�am�i'ma��A�iC�i�A�'mC�am�A�aC�gonna�i've��A�iC�i�A�'veC�have�i.��A�i.�i.e.��A�i.e.�id��A�iC�i�A�dC�'d�idve��A�iC�i�A�dC�would�A�veC�have�illve��A�iC�i�A�llC�will�A�veC�have�im��A�iC�i�A�m�ima��A�iC�i�A�mC�am�A�aC�gonna�isn't��A�isC�is�A�n'tC�not�isnt��A�isC�is�A�ntC�not�isn’t��A�isC�is�A�n’tC�not�it'd��A�itC�it�A�'dC�'d�it'd've��A�itC�it�A�'dC�would�A�'veC�have�it'll��A�itC�it�A�'llC�will�it'll've��A�itC�it�A�'llC�will�A�'veC�have�it's��A�itC�it�A�'sC�'s�itd��A�itC�it�A�dC�'d�itdve��A�itC�it�A�dC�would�A�veC�have�itll��A�itC�it�A�llC�will�itllve��A�itC�it�A�llC�will�A�veC�have�it’d��A�itC�it�A�’dC�'d�it’d’ve��A�itC�it�A�’dC�would�A�’veC�have�it’ll��A�itC�it�A�’llC�will�it’ll’ve��A�itC�it�A�’llC�will�A�’veC�have�it’s��A�itC�it�A�’sC�'s�ive��A�iC�i�A�veC�have�i’d��A�iC�i�A�’dC�'d�i’d’ve��A�iC�i�A�’dC�would�A�’veC�have�i’ll��A�iC�i�A�’llC�will�i’ll’ve��A�iC�i�A�’llC�will�A�’veC�have�i’m��A�iC�i�A�’mC�am�i’ma��A�iC�i�A�’mC�am�A�aC�gonna�i’ve��A�iC�i�A�’veC�have�j.��A�j.�k.��A�k.�l.��A�l.�let's��A�let�A�'sC�us�let’s��A�let�A�’sC�us�ll��A�llC�will�lovin��A�lovinC�loving�lovin'��A�lovin'C�loving�lovin’��A�lovin’C�loving�m.��A�m.�ma'am��A�ma'amC�madam�mayn't��A�mayC�may�A�n'tC�not�mayn't've��A�mayC�may�A�n'tC�not�A�'veC�have�maynt��A�mayC�may�A�ntC�not�mayntve��A�mayC�may�A�ntC�not�A�veC�have�mayn’t��A�mayC�may�A�n’tC�not�mayn’t’ve��A�mayC�may�A�n’tC�not�A�’veC�have�ma’am��A�ma’amC�madam�might've��A�mightC�might�A�'ve�mightn't��A�mightC�might�A�n'tC�not�mightn't've��A�mightC�might�A�n'tC�not�A�'veC�have�mightnt��A�mightC�might�A�ntC�not�mightntve��A�mightC�might�A�ntC�not�A�veC�have�mightn’t��A�mightC�might�A�n’tC�not�mightn’t’ve��A�mightC�might�A�n’tC�not�A�’veC�have�mightve��A�mightC�might�A�ve�might’ve��A�mightC�might�A�’ve�must've��A�mustC�must�A�'ve�mustn't��A�mustC�must�A�n'tC�not�mustn't've��A�mustC�must�A�n'tC�not�A�'veC�have�mustnt��A�mustC�must�A�ntC�not�mustntve��A�mustC�must�A�ntC�not�A�veC�have�mustn’t��A�mustC�must�A�n’tC�not�mustn’t’ve��A�mustC�must�A�n’tC�not�A�’veC�have�mustve��A�mustC�must�A�ve�must’ve��A�mustC�must�A�’ve�n.��A�n.�needn't��A�needC�need�A�n'tC�not�needn't've��A�needC�need�A�n'tC�not�A�'veC�have�neednt��A�needC�need�A�ntC�not�needntve��A�needC�need�A�ntC�not�A�veC�have�needn’t��A�needC�need�A�n’tC�not�needn’t’ve��A�needC�need�A�n’tC�not�A�’veC�have�not've��A�not�A�'veC�have�nothin��A�nothinC�nothing�nothin'��A�nothin'C�nothing�nothin’��A�nothin’C�nothing�notve��A�not�A�veC�have�not’ve��A�not�A�’veC�have�nuff��A�nuffC�enough�nuthin��A�nuthinC�nothing�nuthin'��A�nuthin'C�nothing�nuthin’��A�nuthin’C�nothing�o'clock��A�o'clockC�o'clock�o.��A�o.�o.0��A�o.0�o.O��A�o.O�o.o��A�o.o�o_0��A�o_0�o_O��A�o_O�o_o��A�o_o�ol��A�olC�old�ol'��A�ol'C�old�ol’��A�ol’C�old�oughtn't��A�oughtC�ought�A�n'tC�not�oughtn't've��A�oughtC�ought�A�n'tC�not�A�'veC�have�oughtnt��A�oughtC�ought�A�ntC�not�oughtntve��A�oughtC�ought�A�ntC�not�A�veC�have�oughtn’t��A�oughtC�ought�A�n’tC�not�oughtn’t’ve��A�oughtC�ought�A�n’tC�not�A�’veC�have�o’clock��A�o’clockC�o'clock�p.��A�p.�p.m.��A�p.m.�q.��A�q.�r.��A�r.�s.��A�s.�shan't��A�shaC�shall�A�n'tC�not�shan't've��A�shaC�shall�A�n'tC�not�A�'veC�have�shant��A�shaC�shall�A�ntC�not�shantve��A�shaC�shall�A�ntC�not�A�veC�have�shan’t��A�shaC�shall�A�n’tC�not�shan’t’ve��A�shaC�shall�A�n’tC�not�A�’veC�have�she'd��A�sheC�she�A�'dC�'d�she'd've��A�sheC�she�A�'dC�would�A�'veC�have�she'll��A�sheC�she�A�'llC�will�she'll've��A�sheC�she�A�'llC�will�A�'veC�have�she's��A�sheC�she�A�'sC�'s�shedve��A�sheC�she�A�dC�would�A�veC�have�shellve��A�sheC�she�A�llC�will�A�veC�have�shes��A�sheC�she�A�s�she’d��A�sheC�she�A�’dC�'d�she’d’ve��A�sheC�she�A�’dC�would�A�’veC�have�she’ll��A�sheC�she�A�’llC�will�she’ll’ve��A�sheC�she�A�’llC�will�A�’veC�have�she’s��A�sheC�she�A�’sC�'s�should've��A�shouldC�should�A�'ve�shouldn't��A�shouldC�should�A�n'tC�not�shouldn't've��A�shouldC�should�A�n'tC�not�A�'veC�have�shouldnt��A�shouldC�should�A�ntC�not�shouldntve��A�shouldC�should�A�ntC�not�A�veC�have�shouldn’t��A�shouldC�should�A�n’tC�not�shouldn’t’ve��A�shouldC�should�A�n’tC�not�A�’veC�have�shouldve��A�shouldC�should�A�ve�should’ve��A�shouldC�should�A�’ve�somethin��A�somethinC�something�somethin'��A�somethin'C�something�somethin’��A�somethin’C�something�t.��A�t.�that'd��A�thatC�that�A�'dC�'d�that'd've��A�thatC�that�A�'dC�would�A�'veC�have�that'll��A�thatC�that�A�'llC�will�that'll've��A�thatC�that�A�'llC�will�A�'veC�have�that's��A�thatC�that�A�'sC�'s�thatd��A�thatC�that�A�dC�'d�thatdve��A�thatC�that�A�dC�would�A�veC�have�thatll��A�thatC�that�A�llC�will�thatllve��A�thatC�that�A�llC�will�A�veC�have�thats��A�thatC�that�A�s�that’d��A�thatC�that�A�’dC�'d�that’d’ve��A�thatC�that�A�’dC�would�A�’veC�have�that’ll��A�thatC�that�A�’llC�will�that’ll’ve��A�thatC�that�A�’llC�will�A�’veC�have�that’s��A�thatC�that�A�’sC�'s�there'd��A�thereC�there�A�'dC�'d�there'd've��A�thereC�there�A�'dC�would�A�'veC�have�there'll��A�thereC�there�A�'llC�will�there'll've��A�thereC�there�A�'llC�will�A�'veC�have�there're��A�thereC�there�A�'reC�are�there's��A�thereC�there�A�'sC�'s�there've��A�thereC�there�A�'ve�thered��A�thereC�there�A�dC�'d�theredve��A�thereC�there�A�dC�would�A�veC�have�therell��A�thereC�there�A�llC�will�therellve��A�thereC�there�A�llC�will�A�veC�have�therere��A�thereC�there�A�reC�are�theres��A�thereC�there�A�s�thereve��A�there�A�veC�have�there’d��A�thereC�there�A�’dC�'d�there’d’ve��A�thereC�there�A�’dC�would�A�’veC�have�there’ll��A�thereC�there�A�’llC�will�there’ll’ve��A�thereC�there�A�’llC�will�A�’veC�have�there’re��A�thereC�there�A�’reC�are�there’s��A�thereC�there�A�’sC�'s�there’ve��A�thereC�there�A�’ve�these'd��A�theseC�these�A�'dC�'d�these'd've��A�theseC�these�A�'dC�would�A�'veC�have�these'll��A�theseC�these�A�'llC�will�these'll've��A�theseC�these�A�'llC�will�A�'veC�have�these're��A�theseC�these�A�'reC�are�these've��A�theseC�these�A�'ve�thesed��A�theseC�these�A�dC�'d�thesedve��A�theseC�these�A�dC�would�A�veC�have�thesell��A�theseC�these�A�llC�will�thesellve��A�theseC�these�A�llC�will�A�veC�have�thesere��A�theseC�these�A�reC�are�theseve��A�these�A�veC�have�these’d��A�theseC�these�A�’dC�'d�these’d’ve��A�theseC�these�A�’dC�would�A�’veC�have�these’ll��A�theseC�these�A�’llC�will�these’ll’ve��A�theseC�these�A�’llC�will�A�’veC�have�these’re��A�theseC�these�A�’reC�are�these’ve��A�theseC�these�A�’ve�they'd��A�theyC�they�A�'dC�'d�they'd've��A�theyC�they�A�'dC�would�A�'veC�have�they'll��A�theyC�they�A�'llC�will�they'll've��A�theyC�they�A�'llC�will�A�'veC�have�they're��A�theyC�they�A�'reC�are�they've��A�theyC�they�A�'veC�have�theyd��A�theyC�they�A�dC�'d�theydve��A�theyC�they�A�dC�would�A�veC�have�theyll��A�theyC�they�A�llC�will�theyllve��A�theyC�they�A�llC�will�A�veC�have�theyre��A�theyC�they�A�reC�are�theyve��A�theyC�they�A�veC�have�they’d��A�theyC�they�A�’dC�'d�they’d’ve��A�theyC�they�A�’dC�would�A�’veC�have�they’ll��A�theyC�they�A�’llC�will�they’ll’ve��A�theyC�they�A�’llC�will�A�’veC�have�they’re��A�theyC�they�A�’reC�are�they’ve��A�theyC�they�A�’veC�have�this'd��A�thisC�this�A�'dC�'d�this'd've��A�thisC�this�A�'dC�would�A�'veC�have�this'll��A�thisC�this�A�'llC�will�this'll've��A�thisC�this�A�'llC�will�A�'veC�have�this's��A�thisC�this�A�'sC�'s�thisd��A�thisC�this�A�dC�'d�thisdve��A�thisC�this�A�dC�would�A�veC�have�thisll��A�thisC�this�A�llC�will�thisllve��A�thisC�this�A�llC�will�A�veC�have�thiss��A�thisC�this�A�s�this’d��A�thisC�this�A�’dC�'d�this’d’ve��A�thisC�this�A�’dC�would�A�’veC�have�this’ll��A�thisC�this�A�’llC�will�this’ll’ve��A�thisC�this�A�’llC�will�A�’veC�have�this’s��A�thisC�this�A�’sC�'s�those'd��A�thoseC�those�A�'dC�'d�those'd've��A�thoseC�those�A�'dC�would�A�'veC�have�those'll��A�thoseC�those�A�'llC�will�those'll've��A�thoseC�those�A�'llC�will�A�'veC�have�those're��A�thoseC�those�A�'reC�are�those've��A�thoseC�those�A�'ve�thosed��A�thoseC�those�A�dC�'d�thosedve��A�thoseC�those�A�dC�would�A�veC�have�thosell��A�thoseC�those�A�llC�will�thosellve��A�thoseC�those�A�llC�will�A�veC�have�thosere��A�thoseC�those�A�reC�are�thoseve��A�those�A�veC�have�those’d��A�thoseC�those�A�’dC�'d�those’d’ve��A�thoseC�those�A�’dC�would�A�’veC�have�those’ll��A�thoseC�those�A�’llC�will�those’ll’ve��A�thoseC�those�A�’llC�will�A�’veC�have�those’re��A�thoseC�those�A�’reC�are�those’ve��A�thoseC�those�A�’ve�u.��A�u.�v.��A�v.�v.s.��A�v.s.�v.v��A�v.v�v_v��A�v_v�vs.��A�vs.�w.��A�w.�w/o��A�w/oC�without�wasn't��A�wasC�was�A�n'tC�not�wasnt��A�wasC�was�A�ntC�not�wasn’t��A�wasC�was�A�n’tC�not�we'd��A�weC�we�A�'dC�'d�we'd've��A�weC�we�A�'dC�would�A�'veC�have�we'll��A�weC�we�A�'llC�will�we'll've��A�weC�we�A�'llC�will�A�'veC�have�we're��A�weC�we�A�'reC�are�we've��A�weC�we�A�'veC�have�wed��A�weC�we�A�dC�'d�wedve��A�weC�we�A�dC�would�A�veC�have�wellve��A�weC�we�A�llC�will�A�veC�have�weren't��A�wereC�were�A�n'tC�not�werent��A�wereC�were�A�ntC�not�weren’t��A�wereC�were�A�n’tC�not�weve��A�weC�we�A�veC�have�we’d��A�weC�we�A�’dC�'d�we’d’ve��A�weC�we�A�’dC�would�A�’veC�have�we’ll��A�weC�we�A�’llC�will�we’ll’ve��A�weC�we�A�’llC�will�A�’veC�have�we’re��A�weC�we�A�’reC�are�we’ve��A�weC�we�A�’veC�have�what'd��A�whatC�what�A�'dC�'d�what'd've��A�whatC�what�A�'dC�would�A�'veC�have�what'll��A�whatC�what�A�'llC�will�what'll've��A�whatC�what�A�'llC�will�A�'veC�have�what're��A�whatC�what�A�'reC�are�what's��A�whatC�what�A�'sC�'s�what've��A�whatC�what�A�'ve�whatd��A�whatC�what�A�dC�'d�whatdve��A�whatC�what�A�dC�would�A�veC�have�whatll��A�whatC�what�A�llC�will�whatllve��A�whatC�what�A�llC�will�A�veC�have�whatre��A�whatC�what�A�reC�are�whats��A�whatC�what�A�s�whatve��A�what�A�veC�have�what’d��A�whatC�what�A�’dC�'d�what’d’ve��A�whatC�what�A�’dC�would�A�’veC�have�what’ll��A�whatC�what�A�’llC�will�what’ll’ve��A�whatC�what�A�’llC�will�A�’veC�have�what’re��A�whatC�what�A�’reC�are�what’s��A�whatC�what�A�’sC�'s�what’ve��A�whatC�what�A�’ve�when'd��A�whenC�when�A�'dC�'d�when'd've��A�whenC�when�A�'dC�would�A�'veC�have�when'll��A�whenC�when�A�'llC�will�when'll've��A�whenC�when�A�'llC�will�A�'veC�have�when're��A�whenC�when�A�'reC�are�when's��A�whenC�when�A�'sC�'s�when've��A�whenC�when�A�'ve�whend��A�whenC�when�A�dC�'d�whendve��A�whenC�when�A�dC�would�A�veC�have�whenll��A�whenC�when�A�llC�will�whenllve��A�whenC�when�A�llC�will�A�veC�have�whenre��A�whenC�when�A�reC�are�whens��A�whenC�when�A�s�whenve��A�when�A�veC�have�when’d��A�whenC�when�A�’dC�'d�when’d’ve��A�whenC�when�A�’dC�would�A�’veC�have�when’ll��A�whenC�when�A�’llC�will�when’ll’ve��A�whenC�when�A�’llC�will�A�’veC�have�when’re��A�whenC�when�A�’reC�are�when’s��A�whenC�when�A�’sC�'s�when’ve��A�whenC�when�A�’ve�where'd��A�whereC�where�A�'dC�'d�where'd've��A�whereC�where�A�'dC�would�A�'veC�have�where'll��A�whereC�where�A�'llC�will�where'll've��A�whereC�where�A�'llC�will�A�'veC�have�where're��A�whereC�where�A�'reC�are�where's��A�whereC�where�A�'sC�'s�where've��A�whereC�where�A�'ve�whered��A�whereC�where�A�dC�'d�wheredve��A�whereC�where�A�dC�would�A�veC�have�wherell��A�whereC�where�A�llC�will�wherellve��A�whereC�where�A�llC�will�A�veC�have�wherere��A�whereC�where�A�reC�are�wheres��A�whereC�where�A�s�whereve��A�where�A�veC�have�where’d��A�whereC�where�A�’dC�'d�where’d’ve��A�whereC�where�A�’dC�would�A�’veC�have�where’ll��A�whereC�where�A�’llC�will�where’ll’ve��A�whereC�where�A�’llC�will�A�’veC�have�where’re��A�whereC�where�A�’reC�are�where’s��A�whereC�where�A�’sC�'s�where’ve��A�whereC�where�A�’ve�who'd��A�whoC�who�A�'dC�'d�who'd've��A�whoC�who�A�'dC�would�A�'veC�have�who'll��A�whoC�who�A�'llC�will�who'll've��A�whoC�who�A�'llC�will�A�'veC�have�who're��A�whoC�who�A�'reC�are�who's��A�whoC�who�A�'sC�'s�who've��A�whoC�who�A�'ve�whod��A�whoC�who�A�dC�'d�whodve��A�whoC�who�A�dC�would�A�veC�have�wholl��A�whoC�who�A�llC�will�whollve��A�whoC�who�A�llC�will�A�veC�have�whos��A�whoC�who�A�s�whove��A�who�A�veC�have�who’d��A�whoC�who�A�’dC�'d�who’d’ve��A�whoC�who�A�’dC�would�A�’veC�have�who’ll��A�whoC�who�A�’llC�will�who’ll’ve��A�whoC�who�A�’llC�will�A�’veC�have�who’re��A�whoC�who�A�’reC�are�who’s��A�whoC�who�A�’sC�'s�who’ve��A�whoC�who�A�’ve�why'd��A�whyC�why�A�'dC�'d�why'd've��A�whyC�why�A�'dC�would�A�'veC�have�why'll��A�whyC�why�A�'llC�will�why'll've��A�whyC�why�A�'llC�will�A�'veC�have�why're��A�whyC�why�A�'reC�are�why's��A�whyC�why�A�'sC�'s�why've��A�whyC�why�A�'ve�whyd��A�whyC�why�A�dC�'d�whydve��A�whyC�why�A�dC�would�A�veC�have�whyll��A�whyC�why�A�llC�will�whyllve��A�whyC�why�A�llC�will�A�veC�have�whyre��A�whyC�why�A�reC�are�whys��A�whyC�why�A�s�whyve��A�why�A�veC�have�why’d��A�whyC�why�A�’dC�'d�why’d’ve��A�whyC�why�A�’dC�would�A�’veC�have�why’ll��A�whyC�why�A�’llC�will�why’ll’ve��A�whyC�why�A�’llC�will�A�’veC�have�why’re��A�whyC�why�A�’reC�are�why’s��A�whyC�why�A�’sC�'s�why’ve��A�whyC�why�A�’ve�won't��A�woC�will�A�n'tC�not�won't've��A�woC�will�A�n'tC�not�A�'veC�have�wont��A�woC�will�A�ntC�not�wontve��A�woC�will�A�ntC�not�A�veC�have�won’t��A�woC�will�A�n’tC�not�won’t’ve��A�woC�will�A�n’tC�not�A�’veC�have�would've��A�wouldC�would�A�'ve�wouldn't��A�wouldC�would�A�n'tC�not�wouldn't've��A�wouldC�would�A�n'tC�not�A�'veC�have�wouldnt��A�wouldC�would�A�ntC�not�wouldntve��A�wouldC�would�A�ntC�not�A�veC�have�wouldn’t��A�wouldC�would�A�n’tC�not�wouldn’t’ve��A�wouldC�would�A�n’tC�not�A�’veC�have�wouldve��A�wouldC�would�A�ve�would’ve��A�wouldC�would�A�’ve�x.��A�x.�xD��A�xD�xDD��A�xDD�y'all��A�y'C�you�A�all�y.��A�y.�yall��A�yC�you�A�all�you'd��A�youC�you�A�'dC�'d�you'd've��A�youC�you�A�'dC�would�A�'veC�have�you'll��A�youC�you�A�'llC�will�you'll've��A�youC�you�A�'llC�will�A�'veC�have�you're��A�youC�you�A�'reC�are�you've��A�youC�you�A�'veC�have�youd��A�youC�you�A�dC�'d�youdve��A�youC�you�A�dC�would�A�veC�have�youll��A�youC�you�A�llC�will�youllve��A�youC�you�A�llC�will�A�veC�have�youre��A�youC�you�A�reC�are�youve��A�youC�you�A�veC�have�you’d��A�youC�you�A�’dC�'d�you’d’ve��A�youC�you�A�’dC�would�A�’veC�have�you’ll��A�youC�you�A�’llC�will�you’ll’ve��A�youC�you�A�’llC�will�A�’veC�have�you’re��A�youC�you�A�’reC�are�you’ve��A�youC�you�A�’veC�have�y’all��A�y’C�you�A�all�z.��A�z.� ��A� C� �¯\(ツ)/¯��A�¯\(ツ)/¯�°C.��A�°�A�C�A�.�°F.��A�°�A�F�A�.�°K.��A�°�A�K�A�.�°c.��A�°�A�c�A�.�°f.��A�°�A�f�A�.�°k.��A�°�A�k�A�.�ä.��A�ä.�ö.��A�ö.�ü.��A�ü.�ಠ_ಠ��A�ಠ_ಠ�ಠ︵ಠ��A�ಠ︵ಠ�—��A�—�‘S��A�‘SC�'s�‘s��A�‘sC�'s�’��A�’�’Cause��A�’CauseC�because�’Cos��A�’CosC�because�’Coz��A�’CozC�because�’Cuz��A�’CuzC�because�’S��A�’SC�'s�’bout��A�’boutC�about�’cause��A�’causeC�because�’cos��A�’cosC�because�’coz��A�’cozC�because�’cuz��A�’cuzC�because�’d��A�’d�’em��A�’emC�them�’ll��A�’llC�will�’nuff��A�’nuffC�enough�’re��A�’reC�are�’s��A�’sC�'s�’’��A�’’�faster_heuristics�
en_core_web_sm-3.6.0/vocab/key2row ADDED
@@ -0,0 +1 @@
 
 
1
+
en_core_web_sm-3.6.0/vocab/lookups.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ddd140ecac6a8c4592e9146d6e30074569ffaed97ee51edc9587dc510f8934c
3
+ size 69982
en_core_web_sm-3.6.0/vocab/strings.json ADDED
The diff for this file is too large to render. See raw diff
 
en_core_web_sm-3.6.0/vocab/vectors ADDED
Binary file (128 Bytes). View file
 
en_core_web_sm-3.6.0/vocab/vectors.cfg ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "mode":"default"
3
+ }
examples/4.png ADDED
examples/5.jpg ADDED
examples/6.jpg ADDED
examples/example_inputs.jsonl CHANGED
@@ -1,3 +1,6 @@
1
  {"id":1, "text": "Describe this image", "image": "examples/1.png"}
2
  {"id":2, "text": "What is written in the image?", "image": "examples/2.jpg"}
3
- {"id":3, "text": "How many houses are there in this cartoon?", "image": "examples/3.jpg"}
 
 
 
 
1
  {"id":1, "text": "Describe this image", "image": "examples/1.png"}
2
  {"id":2, "text": "What is written in the image?", "image": "examples/2.jpg"}
3
+ {"id":3, "text": "How many houses are there in this cartoon?", "image": "examples/3.jpg"}
4
+ {"id":4, "text": "Can you provide a description of the image and include the coordinates [[x0,y0,x1,y1]] for each mentioned object?", "image": "examples/4.png"}
5
+ {"id":5, "text": "Where is the tree closer to the sun?", "image": "examples/5.jpg"}
6
+ {"id":6, "text": "What color are the clothes of the girl whose hands are holding flowers? Let's think step by step", "image": "examples/6.jpg"}
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ gradio
2
+ seaborn
3
+ PIL
4
+ base64
5
+ matplotlib
6
+ spacy==3.6.0
7
+ requests
8
+ hashlib
utils.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import seaborn as sns
2
+ from PIL import Image, ImageDraw, ImageFont
3
+ import matplotlib.font_manager
4
+ import spacy
5
+ import re
6
+
7
+ nlp = spacy.load("en_core_web_sm-3.6.0")
8
+
9
+ def draw_boxes(image, boxes, texts, output_fn='output.png'):
10
+ box_width = 5
11
+ color_palette = sns.color_palette("husl", len(boxes))
12
+ colors = [(int(r*255), int(g*255), int(b*255)) for r, g, b in color_palette]
13
+
14
+ width, height = image.size
15
+ absolute_boxes = [[(int(box[0] * width), int(box[1] * height), int(box[2] * width), int(box[3] * height)) for box in b] for b in boxes]
16
+
17
+ overlay = Image.new('RGBA', image.size, (255, 255, 255, 0))
18
+ draw = ImageDraw.Draw(overlay)
19
+ font_path = sorted(matplotlib.font_manager.findSystemFonts(fontpaths=None, fontext='ttf'))[0]
20
+ font = ImageFont.truetype(font_path, size=26)
21
+
22
+ for box, text, color in zip(absolute_boxes, texts, colors):
23
+ for b in box:
24
+ draw.rectangle(b, outline=color, width=box_width)
25
+ if not text:
26
+ continue
27
+ splited_text = text.split('\n')
28
+ num_lines = len(splited_text)
29
+ text_width, text_height = font.getbbox(splited_text[0])[-2:]
30
+ y_start = b[3] - text_height * num_lines - box_width
31
+ if b[2] - b[0] < 100 or b[3] - b[1] < 100:
32
+ y_start = b[3]
33
+ for i, line in enumerate(splited_text):
34
+ text_width, text_height = font.getbbox(line)[-2:]
35
+ x = b[0] + box_width
36
+ y = y_start + text_height * i
37
+ draw.rectangle([x, y, x+text_width, y+text_height], fill=(128, 128, 128, 160))
38
+ draw.text((x, y), line, font=font, fill=(255, 255, 255))
39
+ img_with_overlay = Image.alpha_composite(image.convert('RGBA'), overlay).convert('RGB')
40
+ img_with_overlay.save(output_fn)
41
+
42
+ def boxstr_to_boxes(box_str):
43
+ boxes = [[int(y)/1000 for y in x.split(',')] for x in box_str.split(';') if x.replace(',', '').isdigit()]
44
+ return boxes
45
+
46
+ def text_to_dict(text):
47
+ doc = nlp(text)
48
+
49
+ box_matches = list(re.finditer(r'\[\[([^\]]+)\]\]', text))
50
+ box_positions = [match.start() for match in box_matches]
51
+
52
+ noun_phrases = []
53
+ boxes = []
54
+
55
+ for match, box_position in zip(box_matches, box_positions):
56
+ nearest_np_start = max([0] + [chunk.start_char for chunk in doc.noun_chunks if chunk.end_char <= box_position])
57
+ noun_phrase = text[nearest_np_start:box_position].strip()
58
+ if noun_phrase and noun_phrase[-1] == '?':
59
+ noun_phrase = text[:box_position].strip()
60
+ box_string = match.group(1)
61
+
62
+ noun_phrases.append(noun_phrase)
63
+ boxes.append(boxstr_to_boxes(box_string))
64
+
65
+ pairs = []
66
+ for noun_phrase, box_string in zip(noun_phrases, boxes):
67
+ pairs.append((noun_phrase.lower(), box_string))
68
+ return dict(pairs)
69
+
70
+ def parse_response(img, response, output_fn='output.png'):
71
+ img = img.convert('RGB')
72
+ width, height = img.size
73
+ ratio = min(1920 / width, 1080 / height)
74
+ new_width = int(width * ratio)
75
+ new_height = int(height * ratio)
76
+ new_img = img.resize((new_width, new_height), Image.LANCZOS)
77
+ pattern = r"\[\[(.*?)\]\]"
78
+ positions = re.findall(pattern, response)
79
+ boxes = [[[int(y) for y in x.split(',')] for x in pos.split(';') if x.replace(',', '').isdigit()] for pos in positions]
80
+ dic = text_to_dict(response)
81
+ if not dic:
82
+ texts = []
83
+ boxes = []
84
+ else:
85
+ texts, boxes = zip(*dic.items())
86
+ draw_boxes(new_img, boxes, texts, output_fn=output_fn)