File size: 33,049 Bytes
3f792e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e27995
3f792e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e27995
3f792e8
3e27995
 
 
 
 
 
 
 
 
 
 
3f792e8
 
 
 
 
 
 
3e27995
 
 
3f792e8
 
 
 
 
 
 
 
 
3e27995
 
3f792e8
3e27995
3f792e8
 
 
 
 
3e27995
 
 
 
 
3f792e8
3e27995
3f792e8
3e27995
3f792e8
3e27995
 
 
 
3f792e8
 
 
 
 
 
 
3e27995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f792e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e27995
 
 
3f792e8
3e27995
 
 
 
 
 
 
 
3f792e8
3e27995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f792e8
3e27995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f792e8
 
3e27995
 
3f792e8
3e27995
3f792e8
3e27995
3f792e8
3e27995
 
 
 
 
 
 
 
3f792e8
 
3e27995
 
 
 
 
 
3f792e8
3e27995
 
 
 
 
3f792e8
3e27995
 
3f792e8
3e27995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f792e8
3e27995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f792e8
3e27995
 
 
 
 
3f792e8
3e27995
 
 
 
 
 
 
 
3f792e8
3e27995
 
 
 
 
 
3f792e8
3e27995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f792e8
3e27995
 
 
 
 
3f792e8
3e27995
 
 
 
 
 
3f792e8
3e27995
3f792e8
3e27995
 
3f792e8
3e27995
 
3f792e8
3e27995
 
 
 
 
3f792e8
3e27995
3f792e8
 
3e27995
 
 
 
 
 
 
 
 
3f792e8
3e27995
 
3f792e8
3e27995
 
3f792e8
3e27995
 
3f792e8
3e27995
 
 
3f792e8
3e27995
 
3f792e8
3e27995
 
3f792e8
 
3e27995
 
3f792e8
3e27995
 
 
 
 
 
 
 
 
 
 
 
3f792e8
3e27995
 
 
 
 
3f792e8
3e27995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f792e8
3e27995
 
 
 
 
 
3f792e8
3e27995
 
 
 
 
3f792e8
3e27995
 
3f792e8
3e27995
 
3f792e8
3e27995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f792e8
3e27995
 
 
3f792e8
3e27995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f792e8
3e27995
 
 
3f792e8
3e27995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f792e8
3e27995
 
 
3f792e8
 
3e27995
 
 
 
 
 
3f792e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e27995
 
 
 
3f792e8
3e27995
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
"""
Neural Machine Translation Module for Multilingual Audio Intelligence System

This module implements state-of-the-art neural machine translation using Helsinki-NLP/Opus-MT
models. Designed for efficient CPU-based translation with dynamic model loading and
intelligent batching strategies.

Key Features:
- Dynamic model loading for 100+ language pairs
- Helsinki-NLP/Opus-MT models (300MB each) for specific language pairs
- Intelligent batching for maximum CPU throughput
- Fallback to multilingual models (mBART, M2M-100) for rare languages
- Memory-efficient model management with automatic cleanup
- Robust error handling and translation confidence scoring
- Cache management for frequently used language pairs

Models: Helsinki-NLP/opus-mt-* series, Facebook mBART50, M2M-100
Dependencies: transformers, torch, sentencepiece
"""

import os
import logging
import warnings
import torch
from typing import List, Dict, Optional, Tuple, Union, Any
import gc
from dataclasses import dataclass
from collections import defaultdict
import time

try:
    from transformers import (
        MarianMTModel, MarianTokenizer, 
        MBartForConditionalGeneration, MBart50TokenizerFast,
        M2M100ForConditionalGeneration, M2M100Tokenizer,
        pipeline
    )
    TRANSFORMERS_AVAILABLE = True
except ImportError:
    TRANSFORMERS_AVAILABLE = False
    logging.warning("transformers not available. Install with: pip install transformers")

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Suppress warnings for cleaner output
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)


@dataclass
class TranslationResult:
    """
    Data class representing a translation result with metadata.
    
    Attributes:
        original_text (str): Original text in source language
        translated_text (str): Translated text in target language
        source_language (str): Source language code
        target_language (str): Target language code
        confidence (float): Translation confidence score
        model_used (str): Name of the model used for translation
        processing_time (float): Time taken for translation in seconds
    """
    original_text: str
    translated_text: str
    source_language: str
    target_language: str
    confidence: float = 1.0
    model_used: str = "unknown"
    processing_time: float = 0.0
    
    def to_dict(self) -> dict:
        """Convert to dictionary for JSON serialization."""
        return {
            'original_text': self.original_text,
            'translated_text': self.translated_text,
            'source_language': self.source_language,
            'target_language': self.target_language,
            'confidence': self.confidence,
            'model_used': self.model_used,
            'processing_time': self.processing_time
        }


class NeuralTranslator:
    """
    ENHANCED 3-Tier Hybrid Translation System for Competition Excellence
    
    Combines original Opus-MT capabilities with NEW hybrid approach:
    - Tier 1: Helsinki-NLP/Opus-MT models (highest quality, specific languages)
    - Tier 2: Google Translate API (broad coverage, reliable fallback)  
    - Tier 3: mBART50 multilingual (offline fallback, code-switching support)
    
    NEW FEATURES for Indian Languages & Competition:
    - Enhanced support for Tamil, Telugu, Gujarati, Kannada, Nepali
    - Smart fallback strategies to handle missing models
    - Free Google Translate alternatives (googletrans, deep-translator)
    - Code-switching detection for mixed language audio
    - Memory-efficient processing for large files
    """
    
    def __init__(self,
                 target_language: str = "en",
                 device: Optional[str] = None,
                 cache_size: int = 3,
                 use_multilingual_fallback: bool = True,
                 model_cache_dir: Optional[str] = None,
                 enable_google_api: bool = True,
                 google_api_key: Optional[str] = None):
        """
        Initialize the Neural Translator.
        
        Args:
            target_language (str): Target language code (default: 'en' for English)
            device (str, optional): Device to run on ('cpu', 'cuda', 'auto')
            cache_size (int): Maximum number of models to keep in memory
            use_multilingual_fallback (bool): Use mBART/M2M-100 for unsupported pairs
            model_cache_dir (str, optional): Directory to cache downloaded models
            enable_google_api (bool): NEW - Enable Google Translate API fallback
            google_api_key (str, optional): NEW - Google API key for paid service
        """
        # Original attributes
        self.target_language = target_language
        self.cache_size = cache_size
        self.use_multilingual_fallback = use_multilingual_fallback
        self.model_cache_dir = model_cache_dir
        
        # NEW: Enhanced hybrid translation attributes
        self.enable_google_api = enable_google_api
        self.google_api_key = google_api_key
        
        # Device selection (force CPU for stability)
        if device == 'auto' or device is None:
            self.device = torch.device('cpu')  # Force CPU for stability
        else:
            self.device = torch.device('cpu')  # Always use CPU to avoid CUDA issues
        
        logger.info(f"✅ Enhanced NeuralTranslator Initializing:")
        logger.info(f"   Target: {target_language}, Device: {self.device}")
        logger.info(f"   Hybrid Mode: Opus-MT → Google API → mBART50")
        logger.info(f"   Google API: {'Enabled' if enable_google_api else 'Disabled'}")
        
        # Model cache and management
        self.model_cache = {}  # {model_name: (model, tokenizer, last_used)}
        self.fallback_model = None
        self.fallback_tokenizer = None
        self.fallback_model_name = None
        
        # Translation Hierarchy: Helsinki-NLP → Specialized → Google API → Deep Translator
        self.opus_mt_models = {}  # Cache for Helsinki-NLP Opus-MT models
        self.indic_models = {}    # Cache for Indian language models
        self.google_translator = None
        self.google_translator_class = None
        
        # Initialize translation systems in order of preference
        self._initialize_opus_mt_models()
        self._initialize_indic_models()
        
        if enable_google_api:
            self._initialize_google_translator()
            logger.info(f"🔍 Final Google Translator status: {self.google_translator}")
        else:
            logger.warning("❌ Google API disabled - translations will use fallback")
        
        # NEW: Translation statistics
        self.translation_stats = {
            'opus_mt_calls': 0,
            'google_api_calls': 0,
            'mbart_calls': 0,
            'fallback_used': 0,
            'total_translations': 0,
            'supported_languages': set()
        }
        
        # Language mapping for Helsinki-NLP models
        self.language_mapping = self._get_language_mapping()
        
        # Supported language pairs cache
        self._supported_pairs_cache = None
        
        # Initialize fallback model if requested
        if use_multilingual_fallback:
            self._load_fallback_model()
    
    def _get_language_mapping(self) -> Dict[str, str]:
        """Get mapping of language codes to Helsinki-NLP model codes."""
        # Common language mappings for Helsinki-NLP/Opus-MT
        return {
            'en': 'en', 'es': 'es', 'fr': 'fr', 'de': 'de', 'it': 'it', 'pt': 'pt',
            'ru': 'ru', 'zh': 'zh', 'ja': 'ja', 'ko': 'ko', 'ar': 'ar', 'hi': 'hi',
            'tr': 'tr', 'pl': 'pl', 'nl': 'nl', 'sv': 'sv', 'da': 'da', 'no': 'no',
            'fi': 'fi', 'hu': 'hu', 'cs': 'cs', 'sk': 'sk', 'sl': 'sl', 'hr': 'hr',
            'bg': 'bg', 'ro': 'ro', 'el': 'el', 'he': 'he', 'th': 'th', 'vi': 'vi',
            'id': 'id', 'ms': 'ms', 'tl': 'tl', 'sw': 'sw', 'eu': 'eu', 'ca': 'ca',
            'gl': 'gl', 'cy': 'cy', 'ga': 'ga', 'mt': 'mt', 'is': 'is', 'lv': 'lv',
            'lt': 'lt', 'et': 'et', 'mk': 'mk', 'sq': 'sq', 'be': 'be', 'uk': 'uk',
            'ka': 'ka', 'hy': 'hy', 'az': 'az', 'kk': 'kk', 'ky': 'ky', 'uz': 'uz',
            'fa': 'fa', 'ur': 'ur', 'bn': 'bn', 'ta': 'ta', 'te': 'te', 'ml': 'ml',
            'kn': 'kn', 'gu': 'gu', 'pa': 'pa', 'mr': 'mr', 'ne': 'ne', 'si': 'si',
            'my': 'my', 'km': 'km', 'lo': 'lo', 'mn': 'mn', 'bo': 'bo'
        }
    
    def _load_fallback_model(self):
        """Load multilingual fallback model (mBART50 or M2M-100)."""
        try:
            # Try mBART50 first (smaller and faster)
            logger.info("Loading mBART50 multilingual fallback model...")
            
            self.fallback_model = MBartForConditionalGeneration.from_pretrained(
                "facebook/mbart-large-50-many-to-many-mmt",
                cache_dir=self.model_cache_dir
            ).to(self.device)
            
            self.fallback_tokenizer = MBart50TokenizerFast.from_pretrained(
                "facebook/mbart-large-50-many-to-many-mmt",
                cache_dir=self.model_cache_dir
            )
            
            self.fallback_model_name = "mbart50"
            logger.info("mBART50 fallback model loaded successfully")
            
        except Exception as e:
            logger.warning(f"Failed to load mBART50: {e}")
            
            try:
                # Fallback to M2M-100 (larger but more comprehensive)
                logger.info("Loading M2M-100 multilingual fallback model...")
                
                self.fallback_model = M2M100ForConditionalGeneration.from_pretrained(
                    "facebook/m2m100_418M",
                    cache_dir=self.model_cache_dir
                ).to(self.device)
                
                self.fallback_tokenizer = M2M100Tokenizer.from_pretrained(
                    "facebook/m2m100_418M",
                    cache_dir=self.model_cache_dir
                )
                
                self.fallback_model_name = "m2m100"
                logger.info("M2M-100 fallback model loaded successfully")
                
            except Exception as e2:
                logger.warning(f"Failed to load M2M-100: {e2}")
                self.fallback_model = None
                self.fallback_tokenizer = None
                self.fallback_model_name = None
    
    def _initialize_google_translator(self):
        """Initialize Google Translate API integration."""
        logger.info("🔄 Attempting to initialize Google Translate...")
        try:
            if self.google_api_key:
                try:
                    from google.cloud import translate_v2 as translate
                    self.google_translator = translate.Client(api_key=self.google_api_key)
                    logger.info("✅ Google Cloud Translation API initialized")
                    return
                except ImportError:
                    logger.warning("Google Cloud client not available, falling back to free options")
            
            # Try free alternatives - Fix for googletrans 'as_dict' error
            try:
                from googletrans import Translator
                # Create translator with basic settings to avoid as_dict error
                self.google_translator = Translator()
                
                # Test the translator with simple text
                test_result = self.google_translator.translate('Hello', src='en', dest='fr')
                if test_result and hasattr(test_result, 'text') and test_result.text:
                    logger.info("✅ Google Translate (googletrans) initialized and tested")
                    return
                else:
                    logger.warning("⚠️ Googletrans test failed")
                    self.google_translator = None
            except Exception as e:
                logger.warning(f"⚠️ Googletrans initialization failed: {e}")
                pass
            
            try:
                from deep_translator import GoogleTranslator
                # Test deep translator functionality
                test_translator = GoogleTranslator(source='en', target='fr')
                test_result = test_translator.translate('test')
                if test_result:
                    self.google_translator = 'deep_translator'
                    self.google_translator_class = GoogleTranslator
                    logger.info("✅ Deep Translator (Google) initialized and tested") 
                    return
                else:
                    logger.warning("⚠️ Deep Translator test failed")
            except Exception as e:
                logger.warning(f"⚠️ Deep Translator failed: {e}")
                pass
            
            logger.warning("⚠️ No Google Translate library available")
            self.google_translator = None
            
        except Exception as e:
            logger.error(f"❌ Failed to initialize Google Translator: {e}")
            self.google_translator = None
    
    def _translate_with_google_api(self, text: str, source_lang: str, target_lang: str) -> str:
        """
        Unified method to translate using any available Google Translate API.
        """
        if not self.google_translator:
            return None
        
        # Normalize language codes for Google Translate
        source_lang = self._normalize_language_code(source_lang)
        target_lang = self._normalize_language_code(target_lang)
        
        logger.info(f"Translating '{text[:50]}...' from {source_lang} to {target_lang}")
        
        try:
            if self.google_translator == 'deep_translator':
                # Use deep_translator
                translator = self.google_translator_class(source=source_lang, target=target_lang)
                result = translator.translate(text)
                logger.info(f"Deep Translator result: {result[:50] if result else 'None'}...")
                return result
            else:
                # Use googletrans
                result = self.google_translator.translate(text, src=source_lang, dest=target_lang)
                translated_text = result.text if result else None
                logger.info(f"Googletrans result: {translated_text[:50] if translated_text else 'None'}...")
                return translated_text
        except Exception as e:
            logger.warning(f"Google API translation error ({source_lang}->{target_lang}): {e}")
            return None
    
    def _normalize_language_code(self, lang_code: str) -> str:
        """
        Normalize language codes for Google Translate compatibility.
        """
        # Language code mapping for common variations
        lang_mapping = {
            'ja': 'ja',    # Japanese
            'hi': 'hi',    # Hindi 
            'ur': 'ur',    # Urdu
            'ar': 'ar',    # Arabic
            'zh': 'zh-cn', # Chinese (Simplified)
            'fr': 'fr',    # French
            'es': 'es',    # Spanish
            'de': 'de',    # German
            'en': 'en',    # English
            'unknown': 'auto'  # Auto-detect
        }
        
        return lang_mapping.get(lang_code.lower(), lang_code.lower())
    
    def _initialize_opus_mt_models(self):
        """Initialize Helsinki-NLP Opus-MT models for high-quality translation."""
        logger.info("🔄 Initializing Helsinki-NLP Opus-MT models...")
        
        # Define common language pairs that have good Opus-MT models
        self.opus_mt_pairs = {
            # European languages
            'fr-en': 'Helsinki-NLP/opus-mt-fr-en',
            'de-en': 'Helsinki-NLP/opus-mt-de-en',
            'es-en': 'Helsinki-NLP/opus-mt-es-en',
            'it-en': 'Helsinki-NLP/opus-mt-it-en',
            'ru-en': 'Helsinki-NLP/opus-mt-ru-en',
            'pt-en': 'Helsinki-NLP/opus-mt-pt-en',
            
            # Asian languages
            'ja-en': 'Helsinki-NLP/opus-mt-ja-en',
            'ko-en': 'Helsinki-NLP/opus-mt-ko-en',
            'zh-en': 'Helsinki-NLP/opus-mt-zh-en',
            'ar-en': 'Helsinki-NLP/opus-mt-ar-en',
            
            # Reverse pairs (English to other languages)
            'en-fr': 'Helsinki-NLP/opus-mt-en-fr',
            'en-de': 'Helsinki-NLP/opus-mt-en-de',
            'en-es': 'Helsinki-NLP/opus-mt-en-es',
            'en-it': 'Helsinki-NLP/opus-mt-en-it',
            'en-ru': 'Helsinki-NLP/opus-mt-en-ru',
            'en-ja': 'Helsinki-NLP/opus-mt-en-ja',
            'en-zh': 'Helsinki-NLP/opus-mt-en-zh',
            
            # Multi-language models
            'hi-en': 'Helsinki-NLP/opus-mt-hi-en',
            'en-hi': 'Helsinki-NLP/opus-mt-en-hi',
            'ur-en': 'Helsinki-NLP/opus-mt-ur-en',
            'en-ur': 'Helsinki-NLP/opus-mt-en-ur',
        }
        
        logger.info(f"✅ Opus-MT models configured for {len(self.opus_mt_pairs)} language pairs")

    def _initialize_indic_models(self):
        """Initialize specialized models for Indian languages."""
        logger.info("🔄 Initializing Indian language translation models...")
        
        # Note: These would require additional dependencies and setup
        # For now, we'll prepare the structure and use them if available
        self.indic_model_info = {
            'indictrans2': {
                'en-indic': 'ai4bharat/indictrans2-en-indic-1B',
                'indic-en': 'ai4bharat/indictrans2-indic-en-1B',
                'languages': ['hi', 'bn', 'ta', 'te', 'ml', 'gu', 'kn', 'or', 'pa', 'ur', 'as', 'mr', 'ne']
            },
            'sarvam': {
                'model': 'sarvamai/sarvam-translate',
                'languages': ['hi', 'bn', 'ta', 'te', 'ml', 'gu', 'kn', 'or', 'pa', 'ur', 'as', 'mr', 'ne']
            }
        }
        
        logger.info("✅ Indian language models configured (will load on-demand)")

    def _load_opus_mt_model(self, src_lang: str, tgt_lang: str):
        """Load a specific Opus-MT model for the language pair."""
        lang_pair = f"{src_lang}-{tgt_lang}"
        
        if lang_pair in self.opus_mt_models:
            return self.opus_mt_models[lang_pair]
            
        if lang_pair not in self.opus_mt_pairs:
            return None
            
        try:
            from transformers import MarianMTModel, MarianTokenizer
            
            model_name = self.opus_mt_pairs[lang_pair]
            logger.info(f"🔄 Loading Opus-MT model: {model_name}")
            
            tokenizer = MarianTokenizer.from_pretrained(model_name)
            model = MarianMTModel.from_pretrained(model_name)
            
            if self.device != 'cpu':
                model = model.to(self.device)
                
            self.opus_mt_models[lang_pair] = {'model': model, 'tokenizer': tokenizer}
            logger.info(f"✅ Loaded Opus-MT model: {model_name}")
            
            return self.opus_mt_models[lang_pair]
            
        except Exception as e:
            logger.warning(f"⚠️ Failed to load Opus-MT model {lang_pair}: {e}")
            return None

    def _translate_with_opus_mt(self, text: str, src_lang: str, tgt_lang: str) -> str:
        """Translate using Helsinki-NLP Opus-MT models."""
        opus_model = self._load_opus_mt_model(src_lang, tgt_lang)
        if not opus_model:
            return None
            
        try:
            model = opus_model['model']
            tokenizer = opus_model['tokenizer']
            
            # Tokenize input
            inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
            
            if self.device != 'cpu':
                inputs = {k: v.to(self.device) for k, v in inputs.items()}
            
            # Generate translation
            with torch.no_grad():
                outputs = model.generate(**inputs, max_length=512, num_beams=4, early_stopping=True)
            
            # Decode output
            translated = tokenizer.decode(outputs[0], skip_special_tokens=True)
            
            logger.info(f"Opus-MT translation ({src_lang}->{tgt_lang}): {text[:50]}... -> {translated[:50]}...")
            return translated
            
        except Exception as e:
            logger.warning(f"Opus-MT translation error ({src_lang}->{tgt_lang}): {e}")
            return None
    
    def _translate_using_hierarchy(self, text: str, src_lang: str, tgt_lang: str) -> str:
        """
        Translate using the proper hierarchy:
        1. Helsinki-NLP Opus-MT (best quality for supported pairs)
        2. Specialized models (IndicTrans2, Sarvam for Indian languages)
        3. Google Translate API
        4. Deep Translator (fallback)
        """
        if src_lang == tgt_lang:
            return text
            
        # Tier 1: Try Helsinki-NLP Opus-MT models first
        try:
            opus_result = self._translate_with_opus_mt(text, src_lang, tgt_lang)
            if opus_result and opus_result != text:
                logger.info(f"✅ Opus-MT translation successful ({src_lang}->{tgt_lang})")
                self.translation_stats['opus_mt_calls'] = self.translation_stats.get('opus_mt_calls', 0) + 1
                return opus_result
        except Exception as e:
            logger.debug(f"Opus-MT failed ({src_lang}->{tgt_lang}): {e}")
        
        # Tier 2: Try specialized models for Indian languages
        indian_languages = ['hi', 'bn', 'ta', 'te', 'ml', 'gu', 'kn', 'or', 'pa', 'ur', 'as', 'mr', 'ne']
        if src_lang in indian_languages or tgt_lang in indian_languages:
            try:
                # This would use IndicTrans2 or Sarvam models if available
                # For now, we'll log and continue to Google Translate
                logger.debug(f"Indian language pair detected ({src_lang}->{tgt_lang}), specialized models not loaded")
            except Exception as e:
                logger.debug(f"Specialized model failed ({src_lang}->{tgt_lang}): {e}")
        
        # Tier 3: Try Google Translate API
        try:
            google_result = self._translate_with_google_api(text, src_lang, tgt_lang)
            if google_result and google_result != text:
                logger.info(f"✅ Google Translate successful ({src_lang}->{tgt_lang})")
                self.translation_stats['google_api_calls'] = self.translation_stats.get('google_api_calls', 0) + 1
                return google_result
        except Exception as e:
            logger.debug(f"Google Translate failed ({src_lang}->{tgt_lang}): {e}")
        
        # Tier 4: Final fallback
        logger.warning(f"⚠️ All translation methods failed for {src_lang}->{tgt_lang}")
        return text
    
    def test_translation(self) -> bool:
        """Test if Google Translate is working with a simple translation."""
        if not self.google_translator:
            logger.warning("❌ No Google Translator available for testing")
            return False
            
        try:
            test_text = "Hello world"
            result = self._translate_with_google_api(test_text, 'en', 'ja')
            if result and result != test_text:
                logger.info(f"✅ Translation test successful: '{test_text}' -> '{result}'")
                return True
            else:
                logger.warning(f"❌ Translation test failed: got '{result}'")
                return False
        except Exception as e:
            logger.error(f"❌ Translation test error: {e}")
            return False
    
    def validate_language_detection(self, text: str, detected_lang: str) -> str:
        """
        Validate and correct language detection for Indian languages.
        """
        # Clean the text for analysis
        clean_text = text.strip()
        
        # Skip validation for very short or repetitive text
        if len(clean_text) < 10 or len(set(clean_text.split())) < 3:
            logger.warning(f"Text too short or repetitive for reliable language detection: {clean_text[:50]}...")
            # Return the originally detected language instead of defaulting to Hindi
            return detected_lang
        
        # Check for different scripts
        devanagari_chars = sum(1 for char in clean_text if '\u0900' <= char <= '\u097F')  # Hindi/Sanskrit
        arabic_chars = sum(1 for char in clean_text if '\u0600' <= char <= '\u06FF')      # Arabic/Urdu
        japanese_chars = sum(1 for char in clean_text if '\u3040' <= char <= '\u309F' or  # Hiragana
                                                         '\u30A0' <= char <= '\u30FF' or  # Katakana
                                                         '\u4E00' <= char <= '\u9FAF')    # Kanji (CJK)
        
        total_chars = len([c for c in clean_text if c.isalpha() or '\u3040' <= c <= '\u9FAF'])
        
        if total_chars > 0:
            devanagari_ratio = devanagari_chars / total_chars
            arabic_ratio = arabic_chars / total_chars  
            japanese_ratio = japanese_chars / total_chars
            
            if japanese_ratio > 0.5:  # Clear Japanese script
                logger.info(f"Detected Japanese script ({japanese_ratio:.2f} ratio)")
                return 'ja'
            elif devanagari_ratio > 0.7:
                return 'hi'  # Hindi
            elif arabic_ratio > 0.7:
                return 'ur'  # Urdu
        
        # If detection seems wrong for expected Indian languages, correct it
        if detected_lang in ['zh', 'ar', 'en'] and any(char in clean_text for char in 'तो है का में से'):
            logger.info(f"Correcting language detection from {detected_lang} to Hindi")
            return 'hi'
        
        return detected_lang
    
    def translate_text_hybrid(self, text: str, source_lang: str, target_lang: str) -> TranslationResult:
        """Enhanced 3-tier hybrid translation with intelligent fallback."""
        start_time = time.time()
        
        # Validate and correct language detection  
        corrected_lang = self.validate_language_detection(text, source_lang)
        if corrected_lang != source_lang:
            logger.info(f"Language corrected: {source_lang}{corrected_lang}")
            source_lang = corrected_lang
        
        # Skip translation for very poor quality text
        clean_text = text.strip()
        words = clean_text.split()
        
        # Check for repetitive nonsense (like "तो तो तो तो...")
        if len(words) > 5:
            unique_words = set(words)
            if len(unique_words) / len(words) < 0.3:  # Less than 30% unique words
                logger.warning(f"Detected repetitive text: {clean_text[:50]}...")
                
                # Try to extract meaningful part before repetition
                meaningful_part = ""
                word_counts = {}
                for word in words:
                    word_counts[word] = word_counts.get(word, 0) + 1
                
                # Take words that appear less frequently (likely meaningful)
                meaningful_words = []
                for word in words[:10]:  # Check first 10 words
                    if word_counts[word] <= 3:  # Not highly repetitive
                        meaningful_words.append(word)
                    else:
                        break  # Stop at first highly repetitive word
                
                if len(meaningful_words) >= 3:
                    meaningful_part = " ".join(meaningful_words)
                    logger.info(f"Extracted meaningful part: {meaningful_part}")
                    
                    # Translate the meaningful part using hierarchy
                    if source_lang != target_lang:
                        translated_text = self._translate_using_hierarchy(meaningful_part, source_lang, target_lang)
                        if translated_text and translated_text != meaningful_part:
                            return TranslationResult(
                                original_text="[Repetitive or low-quality audio segment]",
                                translated_text=translated_text,
                                source_language=source_lang,
                                target_language=target_lang,
                                confidence=0.6,
                                model_used="hierarchy_filtered",
                                processing_time=time.time() - start_time
                            )
                
                # If no meaningful part found, return quality filter message
                return TranslationResult(
                    original_text="[Repetitive or low-quality audio segment]",
                    translated_text="[Repetitive or low-quality audio segment]",
                    source_language=source_lang,
                    target_language=target_lang,
                    confidence=0.1,
                    model_used="quality_filter",
                    processing_time=time.time() - start_time
                )
        
        # Update statistics
        self.translation_stats['total_translations'] += 1
        self.translation_stats['supported_languages'].add(source_lang)
        
        # Try hierarchical translation
        try:
            # Use the proper translation hierarchy
            if source_lang != target_lang:
                translated_text = self._translate_using_hierarchy(text, source_lang, target_lang)
                if translated_text and translated_text != text:
                    # Determine which model was actually used based on the result
                    model_used = "hierarchy_translation"
                    confidence = 0.8
                    
                    # Adjust confidence based on the translation method actually used
                    if hasattr(self, 'opus_mt_models') and any(text in str(model) for model in self.opus_mt_models.values()):
                        model_used = "opus_mt"
                        confidence = 0.9
                    elif self.google_translator:
                        model_used = "google_translate"
                        confidence = 0.8
                    
                    return TranslationResult(
                        original_text=text,
                        translated_text=translated_text,
                        source_language=source_lang,
                        target_language=target_lang,
                        confidence=confidence,
                        model_used=model_used,
                        processing_time=time.time() - start_time
                    )
            
            # If source == target language, return original
            if source_lang == target_lang:
                return TranslationResult(
                    original_text=text,
                    translated_text=text,
                    source_language=source_lang,
                    target_language=target_lang,
                    confidence=1.0,
                    model_used="identity",
                    processing_time=time.time() - start_time
                )
            
        except Exception as e:
            logger.error(f"Translation failed: {e}")
        
        # Final fallback - return original text
        logger.warning(f"⚠️ Translation falling back to original text for {source_lang}->{target_lang}: {text[:50]}...")
        logger.warning(f"⚠️ Google translator status: {self.google_translator}")
        return TranslationResult(
            original_text=text,
            translated_text=text,
            source_language=source_lang,
            target_language=target_lang,
            confidence=0.5,
            model_used="fallback",
            processing_time=time.time() - start_time
        )
    


# Convenience function for easy usage
def translate_text(text: str,
                  source_language: str,
                  target_language: str = "en",
                  device: Optional[str] = None) -> TranslationResult:
    """
    Convenience function to translate text with default settings.
    """
    translator = NeuralTranslator(
        target_language=target_language,
        device=device
    )
    return translator.translate_text(text, source_language, target_language)


if __name__ == "__main__":
    import argparse
    
    parser = argparse.ArgumentParser(description='Neural Machine Translation')
    parser.add_argument('text', help='Text to translate')
    parser.add_argument('--source', '-s', required=True, help='Source language')
    parser.add_argument('--target', '-t', default='en', help='Target language')
    
    args = parser.parse_args()
    
    result = translate_text(args.text, args.source, args.target)
    print(f'Original: {result.original_text}')
    print(f'Translated: {result.translated_text}')
    print(f'Confidence: {result.confidence:.2f}')