File size: 61,189 Bytes
3f792e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e27995
 
3f792e8
 
 
 
 
 
 
 
 
 
 
 
 
fdcc0cf
 
 
 
 
3f792e8
 
 
 
 
 
 
 
 
 
 
 
 
3e27995
3f792e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e27995
 
3f792e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e27995
3f792e8
 
3e27995
3f792e8
3e27995
 
 
3f792e8
 
3e27995
 
 
938d58f
3f792e8
 
3e27995
3f792e8
3e27995
 
 
3f792e8
 
3e27995
 
 
938d58f
3e27995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
938d58f
3e27995
 
 
3f792e8
 
 
cb974bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f792e8
 
 
3e27995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f792e8
 
 
 
 
 
 
 
 
 
 
3e27995
 
3f792e8
3e27995
3f792e8
 
 
cb974bb
3f792e8
3e27995
 
 
3f792e8
3e27995
 
 
 
 
 
 
 
 
 
3f792e8
cb974bb
3f792e8
3e27995
3f792e8
cb974bb
3e27995
3f792e8
3e27995
3f792e8
3e27995
 
3f792e8
 
 
3e27995
 
 
 
 
 
 
 
 
 
 
 
3f792e8
3e27995
 
 
3f792e8
 
 
 
 
 
 
 
 
 
 
cb974bb
3e27995
 
 
cb974bb
3e27995
 
 
 
 
 
 
 
 
cb974bb
3e27995
cb974bb
3e27995
 
cb974bb
 
3e27995
cb974bb
3e27995
 
 
 
cb974bb
3e27995
 
cb974bb
 
3e27995
 
cb974bb
 
 
 
 
 
 
 
 
 
 
 
 
3f792e8
cb974bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f792e8
 
 
cb974bb
 
 
 
3f792e8
 
cb974bb
 
 
 
3f792e8
cb974bb
 
 
 
 
 
 
3f792e8
cb974bb
3f792e8
cb974bb
 
 
 
3f792e8
cb974bb
3f792e8
cb974bb
 
 
 
 
3f792e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
938d58f
3f792e8
 
 
 
 
 
 
 
938d58f
3f792e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e27995
3f792e8
 
 
 
3e27995
 
3f792e8
 
3e27995
938d58f
3f792e8
 
 
3e27995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f792e8
3e27995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f792e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e27995
3f792e8
 
 
3e27995
3f792e8
 
 
7d36e8b
 
3e27995
3f792e8
 
 
 
 
 
 
 
 
 
 
3e27995
3f792e8
 
 
 
 
 
 
 
 
 
 
 
3e27995
3f792e8
 
 
 
3e27995
3f792e8
 
 
3e27995
3f792e8
 
 
 
3e27995
 
 
3f792e8
3e27995
3f792e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e27995
7d36e8b
 
 
 
 
 
3e27995
3f792e8
 
938d58f
3f792e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e27995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f792e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e27995
 
 
 
 
 
 
 
 
 
 
 
 
3f792e8
 
3e27995
0d2733f
3e27995
 
 
 
 
 
 
0d2733f
 
3e27995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2db2934
3e27995
 
0d2733f
 
 
 
3f792e8
 
 
 
 
 
3e27995
 
 
 
 
 
3f792e8
3e27995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f792e8
3e27995
 
3f792e8
3e27995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f792e8
3e27995
 
 
 
 
 
 
 
 
 
 
 
 
3f792e8
 
3e27995
 
3f792e8
 
 
 
 
3e27995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f792e8
 
3e27995
3f792e8
 
 
3e27995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f792e8
3e27995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f792e8
3e27995
 
 
 
 
 
 
 
 
3f792e8
3e27995
 
 
3f792e8
3e27995
 
 
 
 
 
 
 
 
3f792e8
3e27995
 
 
 
 
 
 
 
 
 
 
3f792e8
 
0d2733f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
"""
Multilingual Audio Intelligence System - FastAPI Web Application

Professional web interface for the complete multilingual audio intelligence pipeline.
Built with FastAPI, HTML templates, and modern CSS for production deployment.

Features:
- Clean, professional UI design
- Real-time audio processing
- Interactive visualizations
- Multiple output formats
- RESTful API endpoints
- Production-ready architecture

Author: Audio Intelligence Team
"""

import os
import sys
import logging
import tempfile
import json
import time
from pathlib import Path
from typing import Dict, List, Optional, Any
import traceback
import asyncio
from datetime import datetime
import requests
import hashlib
from urllib.parse import urlparse
import secrets
from collections import defaultdict

# FastAPI imports
from fastapi import FastAPI, UploadFile, File, Form, Request, HTTPException
from fastapi.responses import HTMLResponse, FileResponse, JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
import uvicorn

# Data processing
import numpy as np
import pandas as pd
from dotenv import load_dotenv

# Load environment variables with error handling
try:
    load_dotenv()
except Exception as e:
    logging.warning(f"Could not load .env file: {e}")

# Add src directory to Python path
sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'src'))

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Safe imports with error handling
try:
    from src.main import AudioIntelligencePipeline
    MAIN_AVAILABLE = True
except Exception as e:
    logger.error(f"Failed to import main pipeline: {e}")
    MAIN_AVAILABLE = False

try:
    import plotly.graph_objects as go
    import plotly.utils
    PLOTLY_AVAILABLE = True
except Exception as e:
    logger.error(f"Failed to import Plotly: {e}")
    PLOTLY_AVAILABLE = False

try:
    from utils import validate_audio_file, format_duration, get_system_info
    UTILS_AVAILABLE = True
except Exception as e:
    logger.error(f"Failed to import utils: {e}")
    UTILS_AVAILABLE = False
        
        # Initialize FastAPI app
app = FastAPI(
    title="Multilingual Audio Intelligence System",
    description="Professional AI-powered speaker diarization, transcription, and translation",
    version="1.0.0",
    docs_url="/api/docs",
    redoc_url="/api/redoc"
)

# Setup templates and static files
templates = Jinja2Templates(directory="templates")

# Create directories if they don't exist
os.makedirs("static", exist_ok=True)
os.makedirs("templates", exist_ok=True)
os.makedirs("uploads", exist_ok=True)
os.makedirs("outputs", exist_ok=True)

app.mount("/static", StaticFiles(directory="static"), name="static")
app.mount("/demo_audio", StaticFiles(directory="demo_audio"), name="demo_audio")

# Global pipeline instance
pipeline = None

# Processing status store (in production, use Redis or database)
processing_status = {}
processing_results = {}  # Store actual results

# ENHANCED Demo file configuration with NEW Indian Language Support
DEMO_FILES = {
    "yuri_kizaki": {
        "name": "Yuri Kizaki",
        "filename": "Yuri_Kizaki.mp3",
        "display_name": "🇯🇵 Japanese Business Communication",
        "language": "ja",
        "description": "Professional audio message about website communication and business enhancement",
        "url": "https://www.mitsue.co.jp/service/audio_and_video/audio_production/media/narrators_sample/yuri_kizaki/03.mp3",
        "expected_text": "音声メッセージが既存のウェブサイトを超えたコミュニケーションを実現。目で見るだけだったウェブサイトに音声情報をインクルードすることで、情報に新しい価値を与え、他者との差別化に効果を発揮します。",
        "expected_translation": "Audio messages enable communication beyond existing websites. By incorporating audio information into visually-driven websites, you can add new value to the information and effectively differentiate your website from others.",
        "category": "business",
        "difficulty": "intermediate",
        "duration": "00:00:32"
    },
    "film_podcast": {
        "name": "Film Podcast",
        "filename": "Film_Podcast.mp3", 
        "display_name": "🇫🇷 French Cinema Discussion",
        "language": "fr",
        "description": "In-depth French podcast discussing recent movies including Social Network and Paranormal Activity",
        "url": "https://www.lightbulblanguages.co.uk/resources/audio/film-podcast.mp3",
        "expected_text": "Le film intitulé The Social Network traite de la création du site Facebook par Mark Zuckerberg et des problèmes judiciaires que cela a comporté pour le créateur de ce site.",
        "expected_translation": "The film The Social Network deals with the creation of Facebook by Mark Zuckerberg and the legal problems this caused for the creator of this site.",
        "category": "entertainment",
        "difficulty": "advanced",
        "duration": "00:03:50"
    },
    "tamil_interview": {
        "name": "Tamil Wikipedia Interview",
        "filename": "Tamil_Wikipedia_Interview.ogg",
        "display_name": "🇮🇳 Tamil Wikipedia Interview",
        "language": "ta",
        "description": "NEW: Tamil language interview about Wikipedia and collaborative knowledge sharing in South India",
        "url": "https://upload.wikimedia.org/wikipedia/commons/5/54/Parvathisri-Wikipedia-Interview-Vanavil-fm.ogg",
        "expected_text": "விக்கிபீடியா என்பது ஒரு கூட்டு முயற்சியாகும். இது தமிழ் மொழியில் அறிவைப் பகிர்ந்து கொள்வதற்கான ஒரு சிறந்த தளமாகும்.",
        "expected_translation": "Wikipedia is a collaborative effort. It is an excellent platform for sharing knowledge in the Tamil language.",
        "category": "education",
        "difficulty": "advanced",
        "duration": "00:36:17",
        "featured": True,
        "new": True,
        "indian_language": True
    },
    "car_trouble": {
        "name": "Car Trouble",
        "filename": "Car_Trouble.mp3",
        "display_name": "🇮🇳 Hindi Daily Conversation",
        "language": "hi", 
        "description": "NEW: Real-world Hindi conversation about car problems and waiting for a mechanic",
        "url": "https://www.tuttlepublishing.com/content/docs/9780804844383/06-18%20Part2%20Car%20Trouble.mp3",
        "expected_text": "गाड़ी खराब हो गई है। मैकेनिक का इंतज़ार कर रहे हैं। कुछ समय लगेगा।",
        "expected_translation": "The car has broken down. We are waiting for the mechanic. It will take some time.",
        "category": "daily_life",
        "difficulty": "beginner", 
        "duration": "00:00:45",
        "featured": True,
        "new": True,
        "indian_language": True
    }
}

@app.get("/health")
async def health():
    """Simple health check endpoint."""
    try:
        # Basic system check
        import shutil
        total, used, free = shutil.disk_usage(".")
        
        if free < 50 * 1024 * 1024:  # less than 50MB
            return {"status": "error", "detail": "Low disk space"}
        
        # Check if models are loaded
        if not hasattr(app.state, "models_loaded") or not app.state.models_loaded:
            return {"status": "error", "detail": "Models not loaded"}
        
        return {"status": "ok"}
        
    except Exception as e:
        return {"status": "error", "detail": str(e)}

# Demo results cache
demo_results_cache = {}

# Session management
user_sessions = defaultdict(dict)
session_files = defaultdict(list)

def transform_to_old_format(results):
    """Transform new JSON format to old format expected by frontend."""
    try:
        # If it's already in old format, return as-is
        if 'segments' in results and 'summary' in results:
            return results
        
        # Transform new format to old format
        segments = []
        summary = {}
        
        # Try to extract segments from different possible locations
        if 'outputs' in results and 'json' in results['outputs']:
            # Parse the JSON string in outputs.json
            try:
                parsed_outputs = json.loads(results['outputs']['json'])
                if 'segments' in parsed_outputs:
                    segments = parsed_outputs['segments']
            except (json.JSONDecodeError, TypeError):
                pass
        
        # Fallback: try direct segments
        if not segments and 'segments' in results:
            segments = results['segments']
        
        # Build summary from processing_stats
        if 'processing_stats' in results:
            stats = results['processing_stats']
            summary = {
                'total_duration': results.get('audio_metadata', {}).get('duration_seconds', 0),
                'num_speakers': stats.get('num_speakers', 1),
                'num_segments': stats.get('num_segments', len(segments)),
                'languages': stats.get('languages_detected', ['unknown']),
                'processing_time': stats.get('total_time', 0)
            }
        else:
            # Fallback summary
            summary = {
                'total_duration': 0,
                'num_speakers': 1,
                'num_segments': len(segments),
                'languages': ['unknown'],
                'processing_time': 0
            }
        
        # Ensure segments have the correct format
        formatted_segments = []
        for seg in segments:
            if isinstance(seg, dict):
                formatted_seg = {
                    'speaker': seg.get('speaker_id', seg.get('speaker', 'SPEAKER_00')),
                    'start_time': seg.get('start_time', 0),
                    'end_time': seg.get('end_time', 0),
                    'text': seg.get('original_text', seg.get('text', '')),
                    'translated_text': seg.get('translated_text', ''),
                    'language': seg.get('original_language', seg.get('language', 'unknown'))
                }
                formatted_segments.append(formatted_seg)
        
        result = {
            'segments': formatted_segments,
            'summary': summary
        }
        
        logger.info(f"✅ Transformed results: {len(formatted_segments)} segments, summary keys: {list(summary.keys())}")
        return result
        
    except Exception as e:
        logger.error(f"❌ Error transforming results to old format: {e}")
        # Return minimal fallback structure
        return {
            'segments': [],
            'summary': {
                'total_duration': 0,
                'num_speakers': 0,
                'num_segments': 0,
                'languages': [],
                'processing_time': 0
            }
        }

class SessionManager:
    """Manages user sessions and cleanup."""
    
    def __init__(self):
        self.sessions = user_sessions
        self.session_files = session_files
        self.cleanup_interval = 3600  # 1 hour
        
    def generate_session_id(self, request: Request) -> str:
        """Generate a unique session ID based on user fingerprint."""
        # Create a stable fingerprint from IP and user agent (no randomness for consistency)
        fingerprint_data = [
            request.client.host if request.client else "unknown",
            request.headers.get("user-agent", "")[:100],  # Truncate for consistency
            request.headers.get("accept-language", "")[:50],  # Truncate for consistency
        ]
        
        # Create hash (no randomness so same user gets same session)
        fingerprint = "|".join(fingerprint_data)
        session_id = hashlib.sha256(fingerprint.encode()).hexdigest()[:16]
        
        # Initialize session if new
        if session_id not in self.sessions:
            self.sessions[session_id] = {
                "created_at": time.time(),
                "last_activity": time.time(),
                "ip": request.client.host if request.client else "unknown",
                "user_agent": request.headers.get("user-agent", "")[:100]  # Truncate for storage
            }
            logger.info(f"🔑 New session created: {session_id}")
        else:
            # Update last activity
            self.sessions[session_id]["last_activity"] = time.time()
            
        return session_id
    
    def add_file_to_session(self, session_id: str, file_path: str):
        """Associate a file with a user session."""
        self.session_files[session_id].append({
            "file_path": file_path,
            "created_at": time.time()
        })
        logger.info(f"📁 Added file to session {session_id}: {file_path}")
    
    def cleanup_session(self, session_id: str):
        """Clean up all files associated with a session."""
        if session_id not in self.session_files:
            return
            
        files_cleaned = 0
        for file_info in self.session_files[session_id]:
            file_path = Path(file_info["file_path"])
            try:
                if file_path.exists():
                    file_path.unlink()
                    files_cleaned += 1
                    logger.info(f"🗑️ Cleaned up file: {file_path}")
            except Exception as e:
                logger.warning(f"⚠️ Failed to delete {file_path}: {e}")
        
        # Clean up session data
        if session_id in self.sessions:
            del self.sessions[session_id]
        if session_id in self.session_files:
            del self.session_files[session_id]
            
        logger.info(f"✅ Session cleanup completed for {session_id}: {files_cleaned} files removed")
        return files_cleaned
    
    def cleanup_expired_sessions(self):
        """Clean up sessions that haven't been active for a while."""
        current_time = time.time()
        expired_sessions = []
        
        for session_id, session_data in list(self.sessions.items()):
            if current_time - session_data["last_activity"] > self.cleanup_interval:
                expired_sessions.append(session_id)
        
        total_cleaned = 0
        for session_id in expired_sessions:
            files_cleaned = self.cleanup_session(session_id)
            total_cleaned += files_cleaned
            
        if expired_sessions:
            logger.info(f"🕒 Expired session cleanup: {len(expired_sessions)} sessions, {total_cleaned} files")
        
        return len(expired_sessions), total_cleaned

# Initialize session manager
session_manager = SessionManager()

class DemoManager:
    """Manages demo files and preprocessing."""
    
    def __init__(self):
        self.demo_dir = Path("demo_audio")
        self.demo_dir.mkdir(exist_ok=True)
        self.results_dir = Path("demo_results")
        self.results_dir.mkdir(exist_ok=True)
    
    async def ensure_demo_files(self):
        """Ensure demo files are available and processed."""
        logger.info("🔄 Checking demo files...")
        
        for demo_id, config in DEMO_FILES.items():
            logger.info(f"📁 Checking demo file: {config['filename']}")
            file_path = self.demo_dir / config["filename"]
            results_path = self.results_dir / f"{demo_id}_results.json"
            
            # Check if file exists, download if not
            if not file_path.exists():
                if config["url"] == "local":
                    logger.warning(f"❌ Local demo file not found: {config['filename']}")
                    logger.info(f"   Expected location: {file_path}")
                    continue
                else:
                    logger.info(f"⬇️ Downloading demo file: {config['filename']}")
                    try:
                        await self.download_demo_file(config["url"], file_path)
                        logger.info(f"✅ Downloaded: {config['filename']}")
                    except Exception as e:
                        logger.error(f"❌ Failed to download {config['filename']}: {e}")
                        continue
            else:
                logger.info(f"✅ Demo file exists: {config['filename']}")
            
            # Check if results exist, process if not
            if not results_path.exists():
                logger.info(f"🔄 Processing demo file: {config['filename']} (first time)")
                try:
                    await self.process_demo_file(demo_id, file_path, results_path)
                    logger.info(f"✅ Demo processing completed: {config['filename']}")
                except Exception as e:
                    logger.error(f"❌ Failed to process {config['filename']}: {e}")
                    continue
            else:
                logger.info(f"📋 Using cached results: {demo_id}")
            
            # Load results into cache
            try:
                if results_path.exists() and results_path.stat().st_size > 0:
                    with open(results_path, 'r', encoding='utf-8') as f:
                        demo_results_cache[demo_id] = json.load(f)
                    logger.info(f"✅ Loaded cached results for {demo_id}")
                else:
                    logger.warning(f"⚠️ Results file empty or missing for {demo_id}")
            except json.JSONDecodeError as e:
                logger.error(f"❌ Invalid JSON in {demo_id} results: {e}")
                # Delete corrupted file and reprocess
                if results_path.exists():
                    results_path.unlink()
                    logger.info(f"🗑️ Deleted corrupted results for {demo_id}, will reprocess on next startup")
            except Exception as e:
                logger.error(f"❌ Failed to load cached results for {demo_id}: {e}")
        
        logger.info(f"✅ Demo files check completed. Available: {len(demo_results_cache)}")
    
    async def download_demo_file(self, url: str, file_path: Path):
        """Download demo file from URL."""
        response = requests.get(url, timeout=30)
        response.raise_for_status()
        
        with open(file_path, 'wb') as f:
            f.write(response.content)
        
        logger.info(f"Downloaded demo file: {file_path.name}")
    
    async def process_demo_file(self, demo_id: str, file_path: Path, results_path: Path):
        """Process a demo file and cache results."""
        logger.info(f"🎵 Starting demo processing: {file_path.name}")
        
        try:
            # Use the global pipeline instance
            global pipeline
            if pipeline is None:
                from src.main import AudioIntelligencePipeline
                pipeline = AudioIntelligencePipeline(
                    whisper_model_size="small",
                    target_language="en",
                    device="cpu"
                )
            
            # Process the audio file
            results = pipeline.process_audio(
                audio_file=file_path,
                output_dir=Path("outputs")
            )
            
            # Save results to cache file
            with open(results_path, 'w', encoding='utf-8') as f:
                json.dump(results, f, indent=2, ensure_ascii=False, default=str)
            
            # Store in memory cache
            demo_results_cache[demo_id] = results
            
            logger.info(f"✅ Demo processing completed and cached: {file_path.name}")
            return results
            
        except Exception as e:
            logger.error(f"❌ Demo processing failed for {file_path.name}: {e}")
            raise
    
    def format_demo_results(self, results: Dict, demo_id: str) -> Dict:
        """Format pipeline results for demo display."""
        formatted_results = {
            "segments": [],
            "summary": {
                "total_duration": 0,
                "num_speakers": 0,
                "num_segments": 0,
                "languages": [],
                "processing_time": 0
            }
        }
        
        try:
            # Extract segments from actual pipeline results
            if 'processed_segments' in results:
                for seg in results['processed_segments']:
                    formatted_results["segments"].append({
                        "speaker": seg.speaker_id if hasattr(seg, 'speaker_id') else "Speaker 1",
                        "start_time": seg.start_time if hasattr(seg, 'start_time') else 0,
                        "end_time": seg.end_time if hasattr(seg, 'end_time') else 0,
                        "text": seg.original_text if hasattr(seg, 'original_text') else "",
                        "translated_text": seg.translated_text if hasattr(seg, 'translated_text') else "",
                        "language": seg.original_language if hasattr(seg, 'original_language') else "unknown"
                    })
            
            # Extract metadata
            if 'audio_metadata' in results:
                metadata = results['audio_metadata']
                formatted_results["summary"]["total_duration"] = metadata.get('duration_seconds', 0)
            
            if 'processing_stats' in results:
                stats = results['processing_stats']
                formatted_results["summary"]["processing_time"] = stats.get('total_time', 0)
            
            # Calculate derived stats
            formatted_results["summary"]["num_segments"] = len(formatted_results["segments"])
            speakers = set(seg["speaker"] for seg in formatted_results["segments"])
            formatted_results["summary"]["num_speakers"] = len(speakers)
            languages = set(seg["language"] for seg in formatted_results["segments"] if seg["language"] != 'unknown')
            formatted_results["summary"]["languages"] = list(languages) if languages else ["unknown"]
            
        except Exception as e:
            logger.error(f"Error formatting demo results: {e}")
            # Return basic structure if formatting fails
            formatted_results["segments"] = [
                {
                    "speaker": "Speaker 1",
                    "start_time": 0.0,
                    "end_time": 5.0,
                    "text": f"Demo processing completed. Error in formatting: {str(e)}",
                    "translated_text": f"Demo processing completed. Error in formatting: {str(e)}",
                    "language": "en"
                }
            ]
            formatted_results["summary"]["total_duration"] = 5.0
            formatted_results["summary"]["num_segments"] = 1
            formatted_results["summary"]["num_speakers"] = 1
            formatted_results["summary"]["languages"] = ["en"]
        
        return formatted_results
    
    def create_fallback_results(self, demo_id: str, error_msg: str) -> Dict:
        """Create fallback results when demo processing fails."""
        config = DEMO_FILES[demo_id]
        return {
            "segments": [
                {
                    "speaker": "System",
                    "start_time": 0.0,
                    "end_time": 1.0,
                    "text": f"Demo processing failed: {error_msg}",
                    "translated_text": f"Demo processing failed: {error_msg}",
                    "language": "en"
                }
            ],
            "summary": {
                "total_duration": 1.0,
                "num_speakers": 1,
                "num_segments": 1,
                "languages": ["en"],
                "processing_time": 0.1
            }
        }

# Initialize demo manager
demo_manager = DemoManager()


class AudioProcessor:
    """Audio processing class with error handling."""
    
    def __init__(self):
        self.pipeline = None
    
    def initialize_pipeline(self, whisper_model: str = "small", 
                          target_language: str = "en", 
                          hf_token: str = None):
        """Initialize the audio intelligence pipeline."""
        if not MAIN_AVAILABLE:
            raise Exception("Main pipeline module not available")
        
        if self.pipeline is None:
            logger.info("Initializing Audio Intelligence Pipeline...")
        try:
                self.pipeline = AudioIntelligencePipeline(
                    whisper_model_size=whisper_model,
                    target_language=target_language,
                    device="auto",
                    hf_token=hf_token or os.getenv('HUGGINGFACE_TOKEN'),
                    output_dir="./outputs"
                )
                logger.info("Pipeline initialization complete!")
        except Exception as e:
                logger.error(f"Pipeline initialization failed: {e}")
                raise
        
        return self.pipeline
    
    async def process_audio_file(self, file_path: str, 
                               whisper_model: str = "small",
                               target_language: str = "en",
                               hf_token: str = None,
                               task_id: str = None) -> Dict[str, Any]:
        """Process audio file and return results."""
        try:
            # Update status
            if task_id:
                processing_status[task_id] = {"status": "initializing", "progress": 10}
            
            # Initialize pipeline
            try:
                pipeline = self.initialize_pipeline(whisper_model, target_language, hf_token)
            except Exception as e:
                logger.error(f"Pipeline initialization failed: {e}")
                if task_id:
                    processing_status[task_id] = {"status": "error", "error": f"Pipeline initialization failed: {str(e)}"}
                raise
            
            if task_id:
                processing_status[task_id] = {"status": "processing", "progress": 30}
            
            # Process audio using the actual pipeline
            try:
                logger.info(f"Processing audio file: {file_path}")
                results = pipeline.process_audio(
                    file_path,
                    save_outputs=True,
                    output_formats=['json', 'srt_original', 'srt_translated', 'text', 'summary']
                )
                logger.info("Audio processing completed successfully")
            except Exception as e:
                logger.error(f"Audio processing failed: {e}")
                if task_id:
                    processing_status[task_id] = {"status": "error", "error": f"Audio processing failed: {str(e)}"}
                raise
            
            if task_id:
                processing_status[task_id] = {"status": "generating_outputs", "progress": 80}
            
            # Generate visualization data
            try:
                viz_data = self.create_visualization_data(results)
                results['visualization'] = viz_data
            except Exception as e:
                logger.warning(f"Visualization generation failed: {e}")
                results['visualization'] = {"error": str(e)}
            
            # Store results for later retrieval
            if task_id:
                processing_results[task_id] = results
                processing_status[task_id] = {"status": "complete", "progress": 100}
            
            return results
            
        except Exception as e:
            logger.error(f"Audio processing failed: {e}")
            if task_id:
                processing_status[task_id] = {"status": "error", "error": str(e)}
            raise
    
    def create_visualization_data(self, results: Dict) -> Dict:
        """Create visualization data from processing results."""
        viz_data = {}
        
        try:
            # Create waveform data
            if PLOTLY_AVAILABLE and results.get('processed_segments'):
                segments = results['processed_segments']
                
                # Get actual duration from results
                duration = results.get('audio_metadata', {}).get('duration_seconds', 30)
                
                # For demo purposes, generate sample waveform
                # In production, you would extract actual audio waveform data
                time_points = np.linspace(0, duration, min(1000, int(duration * 50)))
                waveform = np.random.randn(len(time_points)) * 0.1  # Sample data
                
                # Create plotly figure
                fig = go.Figure()
                
                # Add waveform
                fig.add_trace(go.Scatter(
                    x=time_points,
                    y=waveform,
                    mode='lines',
                    name='Waveform',
                    line=dict(color='#2563eb', width=1)
                ))
                
                # Add speaker segments
                colors = ['#dc2626', '#059669', '#7c2d12', '#4338ca', '#be185d']
                for i, seg in enumerate(segments):
                    color = colors[i % len(colors)]
                    fig.add_vrect(
                        x0=seg.start_time,
                        x1=seg.end_time,
                        fillcolor=color,
                        opacity=0.2,
                        line_width=0,
                        annotation_text=f"{seg.speaker_id}",
                        annotation_position="top left"
                    )
                
                fig.update_layout(
                    title="Audio Waveform with Speaker Segments",
                    xaxis_title="Time (seconds)",
                    yaxis_title="Amplitude",
                    height=400,
                    showlegend=False
                )
                
                viz_data['waveform'] = json.loads(fig.to_json())
            
        except Exception as e:
            logger.error(f"Visualization creation failed: {e}")
            viz_data['waveform'] = None
        
        return viz_data


# Initialize processor
audio_processor = AudioProcessor()




        
@app.get("/", response_class=HTMLResponse)
async def home(request: Request):
    """Home page."""
    return templates.TemplateResponse("index.html", {"request": request})
            
        
@app.post("/api/upload")
async def upload_audio(
    request: Request,
            file: UploadFile = File(...),
    whisper_model: str = Form("small"),
    target_language: str = Form("en"),
    hf_token: Optional[str] = Form(None)
        ):
            """Upload and process audio file."""
            try:
                # Generate session ID for this user
                session_id = session_manager.generate_session_id(request)
                logger.info(f"🔑 Processing upload for session: {session_id}")
                
                # Validate file
                if not file.filename:
                    raise HTTPException(status_code=400, detail="No file provided")
                
                # Check file type
                allowed_types = ['.wav', '.mp3', '.ogg', '.flac', '.m4a']
                file_ext = Path(file.filename).suffix.lower()
                if file_ext not in allowed_types:
                    raise HTTPException(
                        status_code=400, 
                        detail=f"Unsupported file type. Allowed: {', '.join(allowed_types)}"
                    )
                
                # Save uploaded file with session ID
                file_path = f"uploads/{session_id}_{int(time.time())}_{file.filename}"
                with open(file_path, "wb") as buffer:
                    content = await file.read()
                    buffer.write(content)
                
                # Track file in session
                session_manager.add_file_to_session(session_id, file_path)
                
                # Generate task ID with session
                task_id = f"task_{session_id}_{int(time.time())}"
        
                # Start background processing
                asyncio.create_task(
                audio_processor.process_audio_file(
                    file_path, whisper_model, target_language, hf_token, task_id
                ))
                            
                return JSONResponse({
                    "task_id": task_id,
                    "message": "Processing started",
                    "filename": file.filename
                })
                
            except Exception as e:
                logger.error(f"Upload failed: {e}")
                raise HTTPException(status_code=500, detail=str(e))
        

@app.get("/api/status/{task_id}")
async def get_status(task_id: str):
    """Get processing status."""
    if task_id not in processing_status:
        raise HTTPException(status_code=404, detail="Task not found")
    
    return JSONResponse(processing_status[task_id])


@app.get("/api/results/{task_id}")
async def get_results(task_id: str):
    """Get processing results."""
    if task_id not in processing_status:
        raise HTTPException(status_code=404, detail="Task not found")

    status = processing_status[task_id]
    if status.get("status") != "complete":
        raise HTTPException(status_code=202, detail="Processing not complete")

    # Return actual processed results
    if task_id in processing_results:
        results = processing_results[task_id]
        logger.info(f"📊 Found results for task {task_id}: {type(results)}")
        logger.info(f"📊 Results keys: {list(results.keys()) if isinstance(results, dict) else 'Not a dict'}")

        # Convert to the expected format for frontend
        formatted_results = {
            "segments": [],
            "summary": {
                "total_duration": 0,
                "num_speakers": 0,
                "num_segments": 0,
                "languages": [],
                "processing_time": 0
            }
        }

        try:
            # Extract segments information
            if 'processed_segments' in results:
                for seg in results['processed_segments']:
                    formatted_results["segments"].append({
                        "speaker": seg.speaker_id if hasattr(seg, 'speaker_id') else "Unknown Speaker",
                        "start_time": seg.start_time if hasattr(seg, 'start_time') else 0,
                        "end_time": seg.end_time if hasattr(seg, 'end_time') else 0,
                        "text": seg.original_text if hasattr(seg, 'original_text') else "",
                        "translated_text": seg.translated_text if hasattr(seg, 'translated_text') else "",
                        "language": seg.original_language if hasattr(seg, 'original_language') else "unknown",
                    })

            # Extract summary information
            if 'audio_metadata' in results:
                metadata = results['audio_metadata']
                formatted_results["summary"]["total_duration"] = metadata.get('duration_seconds', 0)

            if 'processing_stats' in results:
                stats = results['processing_stats']
                formatted_results["summary"]["processing_time"] = stats.get('total_time', 0)

            # Calculate derived statistics
            formatted_results["summary"]["num_segments"] = len(formatted_results["segments"])
            speakers = set(seg["speaker"] for seg in formatted_results["segments"])
            formatted_results["summary"]["num_speakers"] = len(speakers)
            languages = set(
                seg["language"] for seg in formatted_results["segments"] if seg["language"] != 'unknown'
            )
            formatted_results["summary"]["languages"] = list(languages) if languages else ["unknown"]

        except Exception as e:
            logger.error(f"Error formatting results: {e}")
            # Fallback to basic structure
            formatted_results = {
                "segments": [
                    {
                        "speaker": "Speaker 1",
                        "start_time": 0.0,
                        "end_time": 5.0,
                        "text": f"Processed audio from file. Full results processing encountered an error: {str(e)}",
                        "language": "en",
                    }
                ],
                "summary": {
                    "total_duration": 5.0,
                    "num_speakers": 1,
                    "num_segments": 1,
                    "languages": ["en"],
                    "processing_time": 2.0
                }
            }

        logger.info(f"📤 Returning formatted results for task {task_id}: {len(formatted_results.get('segments', []))} segments")
        return JSONResponse({
            "task_id": task_id,
            "status": "complete",
            "results": formatted_results
        })
                
    else:
        # Fallback if results not found
                return JSONResponse({
            "task_id": task_id,
            "status": "complete",
            "results": {
                "segments": [
                    {
                        "speaker": "System",
                        "start_time": 0.0,
                        "end_time": 1.0,
                        "text": "Audio processing completed but results are not available for display.",
                        "language": "en",
                    }
                ],
                "summary": {
                    "total_duration": 1.0,
                    "num_speakers": 1,
                    "num_segments": 1,
                    "languages": ["en"],
                    "processing_time": 0.1
                }
            }
        })


# async def get_results(task_id: str):
#     """Get processing results."""
#     if task_id not in processing_status:
#         raise HTTPException(status_code=404, detail="Task not found")
    
#     status = processing_status[task_id]
#     if status.get("status") != "complete":
#         raise HTTPException(status_code=202, detail="Processing not complete")
    
#     # Return actual processed results
#     if task_id in processing_results:
#         results = processing_results[task_id]
        
#         # Convert to the expected format for frontend
#         formatted_results = {
#             "segments": [],
#             "summary": {
#                 "total_duration": 0,
#                 "num_speakers": 0,
#                 "num_segments": 0,
#                 "languages": [],
#                 "processing_time": 0
#             }
#         }
        
#         try:
#             # Extract segments information
#             if 'processed_segments' in results:
#                 for seg in results['processed_segments']:
#                     formatted_results["segments"].append({
#                         "speaker": seg.speaker_id if hasattr(seg, 'speaker_id') else "Unknown Speaker",
#                         "start_time": seg.start_time if hasattr(seg, 'start_time') else 0,
#                         "end_time": seg.end_time if hasattr(seg, 'end_time') else 0,
#                         "text": seg.original_text if hasattr(seg, 'original_text') else "",
#                         "translated_text": seg.translated_text if hasattr(seg, 'translated_text') else "",
#                         "language": seg.original_language if hasattr(seg, 'original_language') else "unknown",
#                     })
            
#             # Extract summary information
#             if 'audio_metadata' in results:
#                 metadata = results['audio_metadata']
#                 formatted_results["summary"]["total_duration"] = metadata.get('duration_seconds', 0)
            
#             if 'processing_stats' in results:
#                 stats = results['processing_stats']
#                 formatted_results["summary"]["processing_time"] = stats.get('total_time', 0)
            
#             # Calculate derived statistics
#             formatted_results["summary"]["num_segments"] = len(formatted_results["segments"])
#             speakers = set(seg["speaker"] for seg in formatted_results["segments"])
#             formatted_results["summary"]["num_speakers"] = len(speakers)
#             languages = set(seg["language"] for seg in formatted_results["segments"] if seg["language"] != 'unknown')
#             formatted_results["summary"]["languages"] = list(languages) if languages else ["unknown"]
                
#         except Exception as e:
#             logger.error(f"Error formatting results: {e}")
#             # Fallback to basic structure
#             formatted_results = {
#                 "segments": [
#                     {
#                         "speaker": "Speaker 1",
#                         "start_time": 0.0,
#                         "end_time": 5.0,
#                         "text": f"Processed audio from file. Full results processing encountered an error: {str(e)}",
#                         "language": "en",
#                     }
#                 ],
#                 "summary": {
#                     "total_duration": 5.0,
#                     "num_speakers": 1,
#                     "num_segments": 1,
#                     "languages": ["en"],
#                     "processing_time": 2.0
#                 }
#             }
        
#         return JSONResponse({
#             "task_id": task_id,
#             "status": "complete",
#             "results": formatted_results
#         })
#     else:
#         # Fallback if results not found
#         return JSONResponse({
#             "task_id": task_id,
#             "status": "complete",
#             "results": {
#                 "segments": [
#                     {
#                         "speaker": "System",
#                         "start_time": 0.0,
#                         "end_time": 1.0,
#                         "text": "Audio processing completed but results are not available for display.",
#                         "language": "en",
#                     }
#                 ],
#                 "summary": {
#                     "total_duration": 1.0,
#                     "num_speakers": 1,
#                     "num_segments": 1,
#                     "languages": ["en"],
#                     "processing_time": 0.1
#                 }
#             }
#         })


@app.get("/api/download/{task_id}/{format}")
async def download_results(task_id: str, format: str):
    """Download results in specified format."""
    if task_id not in processing_status:
        raise HTTPException(status_code=404, detail="Task not found")
    
    status = processing_status[task_id]
    if status.get("status") != "complete":
        raise HTTPException(status_code=202, detail="Processing not complete")
    
    # Get actual results or fallback to sample
    if task_id in processing_results:
        results = processing_results[task_id]
    else:
        # Fallback sample results
        results = {
            'processed_segments': [
                type('Segment', (), {
                    'speaker': 'Speaker 1',
                    'start_time': 0.0,
                    'end_time': 3.5,
                    'text': 'Sample transcript content for download.',
                    'language': 'en'
                })()
            ]
        }
    
    # Generate content based on format
    if format == "json":
        try:
            # Try to use existing JSON output if available
            json_path = f"outputs/{task_id}_complete_results.json"
            if os.path.exists(json_path):
                with open(json_path, 'r', encoding='utf-8') as f:
                    content = f.read()
            else:
                # Generate JSON from results
                export_data = {
                    "task_id": task_id,
                    "timestamp": datetime.now().isoformat(),
                    "segments": []
                }
                
                if 'processed_segments' in results:
                    for seg in results['processed_segments']:
                        export_data["segments"].append({
                            "speaker": seg.speaker_id if hasattr(seg, 'speaker_id') else "Unknown",
                            "start_time": seg.start_time if hasattr(seg, 'start_time') else 0,
                            "end_time": seg.end_time if hasattr(seg, 'end_time') else 0,
                            "text": seg.original_text if hasattr(seg, 'original_text') else "",
                            "language": seg.original_language if hasattr(seg, 'original_language') else "unknown"
                        })
                
                content = json.dumps(export_data, indent=2, ensure_ascii=False)
        except Exception as e:
            logger.error(f"Error generating JSON: {e}")
            content = json.dumps({"error": f"Failed to generate JSON: {str(e)}"}, indent=2)
            
        filename = f"results_{task_id}.json"
        media_type = "application/json"
        
    elif format == "srt":
        try:
            # Try to use existing SRT output if available
            srt_path = f"outputs/{task_id}_subtitles_original.srt"
            if os.path.exists(srt_path):
                with open(srt_path, 'r', encoding='utf-8') as f:
                    content = f.read()
            else:
                # Generate SRT from results
                srt_lines = []
                if 'processed_segments' in results:
                    for i, seg in enumerate(results['processed_segments'], 1):
                        start_time = seg.start_time if hasattr(seg, 'start_time') else 0
                        end_time = seg.end_time if hasattr(seg, 'end_time') else 0
                        text = seg.original_text if hasattr(seg, 'original_text') else ""
                        
                        # Format time for SRT (HH:MM:SS,mmm)
                        start_srt = format_srt_time(start_time)
                        end_srt = format_srt_time(end_time)
                        
                        srt_lines.extend([
                            str(i),
                            f"{start_srt} --> {end_srt}",
                            text,
                            ""
                        ])
                
                content = "\n".join(srt_lines)
        except Exception as e:
            logger.error(f"Error generating SRT: {e}")
            content = f"1\n00:00:00,000 --> 00:00:05,000\nError generating SRT: {str(e)}\n"
            
        filename = f"subtitles_{task_id}.srt"
        media_type = "text/plain"
        
    elif format == "txt":
        try:
            # Try to use existing text output if available
            txt_path = f"outputs/{task_id}_transcript.txt"
            if os.path.exists(txt_path):
                with open(txt_path, 'r', encoding='utf-8') as f:
                    content = f.read()
            else:
                # Generate text from results
                text_lines = []
                if 'processed_segments' in results:
                    for seg in results['processed_segments']:
                        speaker = seg.speaker_id if hasattr(seg, 'speaker_id') else "Unknown"
                        text = seg.original_text if hasattr(seg, 'original_text') else ""
                        text_lines.append(f"{speaker}: {text}")
                
                content = "\n".join(text_lines)
        except Exception as e:
            logger.error(f"Error generating text: {e}")
            content = f"Error generating transcript: {str(e)}"
            
        filename = f"transcript_{task_id}.txt"
        media_type = "text/plain"
        
    else:
        raise HTTPException(status_code=400, detail="Unsupported format")
    
    # Save to temporary file
    temp_path = f"outputs/{filename}"
    os.makedirs("outputs", exist_ok=True)
    
    try:
        with open(temp_path, "w", encoding="utf-8") as f:
            f.write(content)
    except Exception as e:
        logger.error(f"Error saving file: {e}")
        raise HTTPException(status_code=500, detail=f"Failed to save file: {str(e)}")
    
    return FileResponse(
        temp_path,
        media_type=media_type,
        filename=filename
    )


def format_srt_time(seconds: float) -> str:
    """Convert seconds to SRT time format (HH:MM:SS,mmm)."""
    hours = int(seconds // 3600)
    minutes = int((seconds % 3600) // 60)
    secs = int(seconds % 60)
    milliseconds = int((seconds % 1) * 1000)
    return f"{hours:02d}:{minutes:02d}:{secs:02d},{milliseconds:03d}"


@app.get("/api/system-info")
async def get_system_info():
    """Get system information."""
    
    # Initialize default info
    info = {
        "version": "1.0.0",
        "features": [
            "Speaker Diarization",
            "Speech Recognition", 
            "Neural Translation",
            "Interactive Visualization"
        ],
        "status": "Live",
        "statusColor": "green"
    }
    
    if UTILS_AVAILABLE:
        try:
            # Enhanced system info collection when utils are available

            # Simple health check without httpx dependency issues
            health_status = "Live"
            health_color = "green"
            
            # Add system information
            import psutil
            import platform
            
            try:
                cpu_percent = psutil.cpu_percent(interval=1)
                memory = psutil.virtual_memory()
                disk = psutil.disk_usage('/')
                
                info.update({
                    "system": {
                        "platform": platform.system(),
                        "python_version": platform.python_version(),
                        "cpu_usage": f"{cpu_percent}%",
                        "memory_usage": f"{memory.percent}%",
                        "disk_usage": f"{disk.percent}%"
                    }
                })
            except ImportError:
                # If psutil is not available, just show basic info
                info.update({
                    "system": {
                        "platform": platform.system(),
                        "python_version": platform.python_version()
                    }
                })
            except Exception as e:
                logger.warning(f"Failed to get system metrics: {e}")
            
            info["status"] = health_status
            info["statusColor"] = health_color
            

        except Exception as e:
            logger.error(f"Failed to get system info: {e}")
    
    return JSONResponse(info)


# Note: Old demo-process endpoint removed in favor of process-demo/{demo_id}


@app.get("/api/demo-files")
async def get_demo_files():
    """Get available demo files with status."""
    try:
        demo_files = []
        
        logger.info(f"📋 Building demo files list from {len(DEMO_FILES)} configurations")
        
        for demo_id, config in DEMO_FILES.items():
            file_path = demo_manager.demo_dir / config["filename"]
            results_cached = demo_id in demo_results_cache
            
            demo_file_info = {
                "id": demo_id,
                "name": config.get("name", config.get("display_name", demo_id)),
                "filename": config["filename"],
                "language": config["language"],
                "description": config["description"],
                "category": config.get("category", "general"),
                "difficulty": config.get("difficulty", "intermediate"),
                "duration": config.get("duration", "unknown"),
                "featured": config.get("featured", False),
                "new": config.get("new", False),
                "indian_language": config.get("indian_language", False),
                "available": file_path.exists(),
                "processed": results_cached,
                "status": "ready" if results_cached else "processing" if file_path.exists() else "downloading"
            }
            
            demo_files.append(demo_file_info)
            logger.info(f"📁 Added demo file: {demo_id} -> {demo_file_info['name']}")
        
        logger.info(f"✅ Returning {len(demo_files)} demo files to frontend")
        return JSONResponse(demo_files)
        
    except Exception as e:
        logger.error(f"❌ Error building demo files list: {e}")
        return JSONResponse({"demo_files": [], "error": str(e)})


@app.get("/demo_audio/{filename}")
async def get_demo_audio(filename: str):
    """Serve demo audio files."""
    try:
        # Security: prevent path traversal
        filename = filename.replace('..', '').replace('/', '').replace('\\', '')
        
        # Check if file exists in demo_audio directory
        audio_path = Path("demo_audio") / filename
        if not audio_path.exists():
            # Try with common extensions
            for ext in ['.mp3', '.wav', '.ogg', '.m4a']:
                audio_path_with_ext = Path("demo_audio") / f"{filename}{ext}"
                if audio_path_with_ext.exists():
                    audio_path = audio_path_with_ext
                    break
            else:
                raise HTTPException(status_code=404, detail="Demo audio file not found")
        
        # Determine content type
        content_type = "audio/mpeg"  # default
        if audio_path.suffix.lower() == '.ogg':
            content_type = "audio/ogg"
        elif audio_path.suffix.lower() == '.wav':
            content_type = "audio/wav"
        elif audio_path.suffix.lower() == '.m4a':
            content_type = "audio/mp4"
        
        logger.info(f"📻 Serving demo audio: {audio_path}")
        return FileResponse(
            path=str(audio_path),
            media_type=content_type,
            filename=audio_path.name
        )
        
    except Exception as e:
        logger.error(f"Error serving demo audio {filename}: {e}")
        raise HTTPException(status_code=500, detail="Failed to serve demo audio")


@app.post("/api/process-demo/{demo_id}")
async def process_demo_by_id(demo_id: str):
    """Process demo file by ID and return cached results."""
    try:
        logger.info(f"🎯 Processing demo file: {demo_id}")
        
        # Check if demo file exists
        if demo_id not in DEMO_FILES:
            raise HTTPException(status_code=404, detail=f"Demo file '{demo_id}' not found")
        
        # Check if results are cached
        results_path = Path("demo_results") / f"{demo_id}_results.json"
        
        if results_path.exists():
            logger.info(f"📁 Loading cached results for {demo_id}")
            try:
                with open(results_path, 'r', encoding='utf-8') as f:
                    results = json.load(f)
                
                # Transform new format to old format if needed
                transformed_results = transform_to_old_format(results)
                
                return JSONResponse({
                    "status": "complete",
                    "results": transformed_results
                })
                
            except json.JSONDecodeError as e:
                logger.error(f"❌ Failed to parse cached results for {demo_id}: {e}")
                # Fall through to reprocess
        
        # If not cached, process the demo file
        logger.info(f"⚡ Processing demo file {demo_id} on-demand")
        file_path = demo_manager.demo_dir / DEMO_FILES[demo_id]["filename"]
        
        if not file_path.exists():
            # Try to download the file first
            try:
                config = DEMO_FILES[demo_id]
                await demo_manager.download_demo_file(config["url"], file_path)
            except Exception as e:
                raise HTTPException(status_code=500, detail=f"Failed to download demo file: {str(e)}")
        
        # Process the file
        results = await demo_manager.process_demo_file(demo_id, file_path, results_path)
        
        # Transform new format to old format
        transformed_results = transform_to_old_format(results)
        
        return JSONResponse({
            "status": "complete", 
            "results": transformed_results
        })
        
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"❌ Error processing demo {demo_id}: {e}")
        return JSONResponse({
            "status": "error",
            "error": str(e)
        }, status_code=500)


@app.post("/api/cleanup")
async def cleanup_session(request: Request):
    """Clean up user session files."""
    try:
        session_id = session_manager.generate_session_id(request)
        files_cleaned = session_manager.cleanup_session(session_id)
        
        return JSONResponse({
            "status": "success",
            "message": f"Cleaned up {files_cleaned} files for session {session_id}",
            "files_cleaned": files_cleaned
        })
        
    except Exception as e:
        logger.error(f"❌ Cleanup error: {e}")
        return JSONResponse(
            status_code=500,
            content={"error": f"Cleanup failed: {str(e)}"}
        )


@app.post("/api/cleanup-expired")
async def cleanup_expired():
    """Clean up expired sessions (admin endpoint)."""
    try:
        sessions_cleaned, files_cleaned = session_manager.cleanup_expired_sessions()
        
        return JSONResponse({
            "status": "success",
            "message": f"Cleaned up {sessions_cleaned} expired sessions",
            "sessions_cleaned": sessions_cleaned,
            "files_cleaned": files_cleaned
        })
        
    except Exception as e:
        logger.error(f"❌ Expired cleanup error: {e}")
        return JSONResponse(
            status_code=500,
            content={"error": f"Expired cleanup failed: {str(e)}"}
        )


@app.get("/api/session-info")
async def get_session_info(request: Request):
    """Get current session information."""
    try:
        session_id = session_manager.generate_session_id(request)
        session_data = session_manager.sessions.get(session_id, {})
        files_count = len(session_manager.session_files.get(session_id, []))
        
        return JSONResponse({
            "session_id": session_id,
            "created_at": session_data.get("created_at"),
            "last_activity": session_data.get("last_activity"),
            "files_count": files_count,
            "status": "active"
        })
        
    except Exception as e:
        logger.error(f"❌ Session info error: {e}")
        return JSONResponse(
            status_code=500,
            content={"error": f"Session info failed: {str(e)}"}
        )


async def startup_event():
    """Application startup tasks"""
    logger.info("🚀 Starting Multilingual Audio Intelligence System...")
    try:
        system_info = get_system_info()
        logger.info(f"📊 System Info: {system_info}")
    except Exception as e:
        logger.warning(f"⚠️ Could not get system info: {e}")
        logger.info("📊 System Info: [System info unavailable]")
    
    # Initialize demo manager
    global demo_manager
    demo_manager = DemoManager()
    await demo_manager.ensure_demo_files()
    
    # Clean up any expired sessions on startup
    sessions_cleaned, files_cleaned = session_manager.cleanup_expired_sessions()
    if sessions_cleaned > 0:
        logger.info(f"🧹 Startup cleanup: {sessions_cleaned} expired sessions, {files_cleaned} files")
    
    logger.info("✅ Startup completed successfully!")

async def shutdown_event():
    """Application shutdown tasks"""
    logger.info("🛑 Shutting down Multilingual Audio Intelligence System...")
    
    # Clean up all active sessions on shutdown
    total_sessions = len(session_manager.sessions)
    total_files = 0
    for session_id in list(session_manager.sessions.keys()):
        files_cleaned = session_manager.cleanup_session(session_id)
        total_files += files_cleaned
    
    if total_sessions > 0:
        logger.info(f"🧹 Shutdown cleanup: {total_sessions} sessions, {total_files} files")

# Register startup and shutdown events
app.add_event_handler("startup", startup_event)
app.add_event_handler("shutdown", shutdown_event)

# Enhanced logging for requests
@app.middleware("http")
async def log_requests(request: Request, call_next):
    start_time = time.time()
    
    # Log request
    logger.info(f"📥 {request.method} {request.url.path}")
    
    response = await call_next(request)
    
    # Log response
    process_time = time.time() - start_time
    logger.info(f"📤 {request.method} {request.url.path}{response.status_code} ({process_time:.2f}s)")
    
    return response

if __name__ == "__main__":
    # Start server
        uvicorn.run(
        app, 
        host="0.0.0.0", 
        port=8000,
        log_level="info"
    )