File size: 12,127 Bytes
6cb7011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154272f
 
6cb7011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import validators
from selectorlib import Extractor
import requests 
import json 
import time
import csv
from dateutil.parser import parse
import sys, os
import re
from datetime import date, datetime
import numpy as np
import math
import concurrent.futures
import boto3
import botocore 
from io import StringIO
import pandas as pd
import streamlit as st
import streamlit.components.v1 as components
import base64
import uuid
#import pyperclip
#from IPython.core.display import HTML
from bokeh.plotting import figure
import plotly.express as px
import plotly.graph_objects as go


# In[2]:


AWS_ACCESS_KEY_ID = st.secrets["AWS_ACCESS_KEY"]
AWS_SECRET_ACCESS_KEY = st.secrets["AWS_SECRET_ACCESS_KEY"]

s3 = boto3.client("s3", 
                  region_name='ap-south-1', 
                  aws_access_key_id=AWS_ACCESS_KEY_ID, 
                  aws_secret_access_key=AWS_SECRET_ACCESS_KEY)

res = boto3.resource("s3",
                     region_name='ap-south-1',
                     aws_access_key_id=AWS_ACCESS_KEY_ID,
                     aws_secret_access_key=AWS_SECRET_ACCESS_KEY)
def getrate(df):
    ind_time_diff = []
    ind_rating = []
    ind_helped = []
    count_of_day = 0
    count_of_five_star = 0
    
    #print(min(df['date']))
    
    df['date'] = pd.to_datetime(df.date, infer_datetime_format = True)
    df['date'] = df['date'].apply(lambda x: pd.Timestamp(x).strftime('%Y-%m-%d'))
    df.sort_values(by = 'date', inplace = True, ascending=True)
    #df.to_csv('data.csv', index=False)
    df = df.query('verified == 1')
    df_len = len(df)
    d0 = parse(min(df['date']))
    d1 = parse(max(df['date']))
    today = parse(date.today().strftime("%Y-%m-%d"))
    for i in df["date"].values:
        ind_time_diff.append((today-parse(i)).days)
    for i in ind_time_diff:
        if i <=100:
            count_of_day+=1
    #print(count_of_day)
    ind_hun_days = ind_time_diff[len(ind_time_diff)-count_of_day:]
    for i in range(0, len(df['rating'].values)):
        if df['rating'].values[i] == None or df['rating'].values[i] == "" or df['rating'].values[i] == "None":
            ind_rating.append(0)
        else:  
            ind_rating.append(float(df['rating'].values[i])/5)
    ind_rating_count_of_day = [i*5 for i in ind_rating[len(ind_time_diff)-count_of_day:]]
    for i in ind_rating_count_of_day:
        if i == 5:
            count_of_five_star += 1
    ind_verified = df['verified'].values
    for i in range(0, len(df['helped'].values)):
        if df['helped'].values[i] == None:
            ind_helped.append(1)
        else:
            if str(df['helped'].values[i]).isdigit() == True:
                ind_helped.append(int(df['helped'].values[i]) + 1)
            else:
                df['helped'].values[i] = df['helped'].values[i].split(",")
                df['helped'].values[i] = "".join(df['helped'].values[i])
                ind_helped.append(int(df['helped'].values[i]) + 1)
        
    deltaT = abs((d1-d0).days)
    if deltaT == 0:
        deltaT = 1
    #print(deltaT)
    rate = (df_len/deltaT)
    #revenue = rate * int(p[1])
    #print(df_len)
    """print(df['date'])
    print(d0, d1, deltaT)
    print(int(p[1]))
    print(revenue)"""

    return df_len, deltaT, rate, ind_time_diff, ind_rating, ind_verified, ind_helped, count_of_day, count_of_five_star, ind_hun_days
#p = ["", "1"]
#df_len, deltaT, rate, revenue = getrate(p)


# In[4]:


def recordlinks(name, df_len, deltaT, rate, url):
    to_insert = {
        'product': name,
        'num_reviews': df_len,
        'deltaT': deltaT,
        'rate': rate,
        'url': url,
        }
    df = pd.read_csv('datalist.csv')
    with open('datalist.csv', 'a', newline="") as savefile:
        writer = csv.DictWriter(savefile, fieldnames=["product", 'num_reviews', "deltaT", "rate", "url"])
        writer.writerow(to_insert)
    print("Saved Data!")


# In[5]:


def scrape(url, e):    
    headers = {
        'authority': 'www.amazon.in',
        'pragma': 'no-cache',
        'cache-control': 'no-cache',
        'dnt': '1',
        'upgrade-insecure-requests': '1',
        'user-agent': 'Mozilla/5.0 (X11; CrOS x86_64 8172.45.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.64 Safari/537.36',
        'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9',
        'sec-fetch-site': 'none',
        'sec-fetch-mode': 'navigate',
        'sec-fetch-dest': 'document',
        'accept-language': 'en-GB,en-US,en-IN;q=0.9,en;q=0.8',
    }

    r = requests.get(url, headers=headers)
    if r.status_code > 500:
        if "To discuss automated access to Amazon data please contact" in r.text:
            print("Page %s was blocked by Amazon. Please try using better proxies %d\n"%(url, r.status_code))
        else:
            print("Page %s must have been blocked by Amazon as the status code was %d"%(url,r.status_code))
        return None
    #print(e.extract(r.text)["product_title"])
    return e.extract(r.text)


# In[6]:


def finding_data(data, url):
    
    if data:
        for r in data['reviews']:
            if r["title"] == None:
                r["title"] = "None"
            r["product"] = data["product_title"]
            r['url'] = url
            try:
                r['rating'] = r['rating'].split(' out of')[0]
            except:
                r['rating'] = "None"
            
            date_posted = r['date'].split('on ')[-1]
            r['date'] = parse(date_posted).strftime('%m-%d-%Y')
            if r['helped'] != None:
                r['helped'] = r['helped'].split(" ")[0]
                if r['helped'] == "One":
                    r['helped'] = "1"
            else:
                r['helped'] = 0
            if r['verified'] != None:
                r['verified'] = r['verified'].split(" ")[0]
                if r['verified'] == "Verified":
                    r['verified'] = "1"
            else:
                r['verified'] = "0"
            
                
        
    #print(data)
    return data
            
# In[7]:

# In[8]:


def get_nextpage(data):
    return "https://www.amazon.in"+data["next_page"]


# In[9]:


def clear_none():
    #df = pd.read_csv('datalist.csv')
    #df.dropna(axis="rows", how="any", inplace = True)
    #df.to_csv('datalist.csv', index=False)
    with open('data.csv', 'w+', encoding="utf-8", errors="ignore") as outfile:
        writer = csv.DictWriter(outfile, fieldnames=["title","content","date", "author","rating","product","url", "verified", "helped"])
        writer.writeheader()
    outfile.close()
#clear_none()


# In[27]:


def get_details(link):
    weight = 0
    count = 0
    details = scrape(link, price_e)
    while details['amazon_given_rating'] == None and count < 15:
        details = scrape(link, price_e)
        print("count: " + str(count))
        count += 1

    if details["price"] == None:
        details["price"] = ["", "1"]
    else:
        if "x" in details["price"]:
            details["price"] = details["price"].split("\xa0")
            details["price"][1] = details["price"][1].split(",")
            details["price"][1] = ["".join(details["price"][1])]
            details["price"][1] = details["price"][1][0].split(".")[0]
        else:
            details["price"] = list(details["price"])
            details["price"].pop(0)
            details["price"] = "".join(details["price"])
            #print(details["price"])
    
    if details["amazon_given_rating"] == None:
        amazon_rating = "-"
    else:
        amazon_rating = details["amazon_given_rating"].split(" out")[0]
        
    if (details['info'] == None) and (details['info2'] != None):
        details['info'] = details['info2']
        details['info2'] = None
        
    if details['info'] != None:
        info = details['info']
        #weight = info.split("Weight ")[1][0]
    print(amazon_rating)
    print(details)

    
    
        
    
    return details["price"], amazon_rating


# In[28]:


def relative_rates(timediff, allrating, allverified, all_helped):
    sum_list = []
    temp_arr = []
    for i in range(0, len(all_helped)):
        temp_arr.append(max(all_helped[i]))
    norm_fact = max(temp_arr)
    #print(temp_arr)
    
    for i in range(0, len(timediff)):
        for j in range(0, len(timediff[i])):
            if int(allverified[i][j]) != 1:
                timediff[i][j] = round((np.exp(-(timediff[i][j]**(1/4))) * allrating[i][j] * (all_helped[i][j]/norm_fact) * 0.1), 5)
            else:
                timediff[i][j] = round((np.exp(-(timediff[i][j]**(1/4))) * allrating[i][j] * (all_helped[i][j]/norm_fact)), 5)
    for i in range(0, len(timediff)):
        sum_list.append(round(sum(timediff[i]), 5))
    return sum_list


# In[29]:

# In[30]:


def find_all_links(link, num):
    link = link.split("?")
    all_links = []
    num_pages = math.ceil(int(num)/10)
    for page in range(0, num_pages):
        link[1] = "pageNumber=" + str(page+1)
        temp_data = {"next_page": "?".join(link)}
        finallink = get_nextpage(temp_data)
        all_links.append(finallink)
    return all_links
        


# In[31]:


def upload(res, asin, file_name):
    file_name = asin + ".csv"
    bucket = "productreviewsdata"
    res.Bucket(bucket).upload_file("data.csv", "alldata/"+file_name)


# In[32]:


def find_asin(link):
    link = link.split("/")
    for i in range(0, len(link)):
        if link[i] == "product-reviews":
            asin = link[i+1]
        if link[i] == "dp":
            asin=link[i+1][0:10]
        if link[i] == "product":
            asin=link[i+1][0:10]
    return asin


# In[33]:


def get_total_reviews(data):
    data['total_reviews'] = data['total_reviews'].split("| ")
    data['total_reviews'] = data['total_reviews'][1].split(" ")[0].split(",")
    data["total_reviews"] = int(''.join(data["total_reviews"]))
    return data["total_reviews"]

def myFunc(e):
    return e["Our Rating"]
def list_down():
    all_the_asin = []
    for l in range(0, len(st.session_state.linksFinal)):
        col1, col2= st.columns([2, 0.5])
        exp = col1.expander(st.session_state.linksFinal[l].split("/ref")[0])
        col2.button("X", key=str(l))
        ASIN = find_asin(st.session_state.linksFinal[l])
        all_the_asin.append(ASIN)
        the_link = """https://ws-in.amazon-adsystem.com/widgets/q?ServiceVersion=20070822&OneJS=1&Operation=GetAdHtml&MarketPlace=IN&source=ss&ref=as_ss_li_til&ad_type=product_link&tracking_id=universalcont-21&language=en_IN&marketplace=amazon&region=IN&placement="""+ASIN+"""&asins="""+ASIN+"""&show_border=true&link_opens_in_new_window=true"""
        with exp:
            components.iframe(the_link, height=240, width=120)
    
    
          
    #print(globals()["col"])
    #print(globals()["col_an"])
    #for n, val in enumerate(st.session_state["final"]):
     #   globals()["var%d"%n] = val

def create_vars(func_col):
    for n, val in enumerate(func_col):
        globals()["var%d"%n] = val
    for n in range(0, len(func_col)):
        with globals()["var"+str(n)]:
            try:
                ASIN = find_asin(st.session_state.linksFinal[n])
                the_link = """https://ws-in.amazon-adsystem.com/widgets/q?ServiceVersion=20070822&OneJS=1&Operation=GetAdHtml&MarketPlace=IN&source=ss&ref=as_ss_li_til&ad_type=product_link&tracking_id=universalcont-21&language=en_IN&marketplace=amazon&region=IN&placement="""+ASIN+"""&asins="""+ASIN+"""&show_border=true&link_opens_in_new_window=true"""
                components.iframe(the_link, height=240, width=120)
                st.button("X", key=str(n))
            except Exception as e:
                 st.write(e)
def create_graph(fig, df):
    df['date'] = pd.to_datetime(df.date, infer_datetime_format = True)
    df['date'] = df['date'].apply(lambda x: pd.Timestamp(x).strftime('%Y-%m-%d'))
    df.sort_values(by = 'date', inplace = True, ascending=True)
    y_data = [i+1 for i in range(0, len(df))]
    fig.add_trace(go.Scatter(x=df["date"], y=y_data, name=list(set(df["product"]))[0][0:20]+"..."))
    return fig