pramodkoujalagi commited on
Commit
a0c7f72
·
1 Parent(s): 7a3f02d

Update space

Browse files
Files changed (1) hide show
  1. app.py +45 -51
app.py CHANGED
@@ -1,64 +1,58 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
 
 
 
33
  stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
 
36
  ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
 
 
 
 
 
 
 
 
46
  demo = gr.ChatInterface(
47
  respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ import json
4
 
5
+ # Initialize the client with your model
6
+ client = InferenceClient("pramodkoujalagi/SmolLM2-360M-Instruct-Text-2-JSON")
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
+ def respond(message, history: list[tuple[str, str]]):
9
+ # Format the prompt according to your model's expected input format
10
+ formatted_prompt = f"""<|im_start|>user
11
+ Extract the relevant event information from this text and organize it into a JSON structure with fields for action, date, time, attendees, location, duration, recurrence, and notes. If a field is not present, return null for that field.
 
12
 
13
+ Text: {message}
14
+ <|im_end|>
15
+ <|im_start|>assistant
16
+ """
17
+
18
+ # Make the API call to your model
19
+ complete_response = ""
20
+ for chunk in client.text_generation(
21
+ formatted_prompt,
22
+ max_new_tokens=512,
23
  stream=True,
24
+ temperature=0.1,
25
+ top_p=0.95,
26
+ stop_sequences=["<|im_end|>"]
27
  ):
28
+ complete_response += chunk
29
+
30
+ # Clean up the response to get just the JSON and remove end tag
31
+ cleaned_response = complete_response.strip()
32
+ # Remove the <|im_end|> tag if present
33
+ cleaned_response = cleaned_response.replace("<|im_end|>", "").strip()
34
+
35
+ try:
36
+ # Parse the JSON to validate it
37
+ json_obj = json.loads(cleaned_response)
38
+ # Return properly formatted JSON
39
+ return json.dumps(json_obj, indent=2)
40
+ except json.JSONDecodeError:
41
+ # If parsing fails, return the raw response with end tag removed
42
+ return cleaned_response
43
+
44
+ # Create the chat interface with no additional inputs
45
  demo = gr.ChatInterface(
46
  respond,
47
+ examples=[
48
+ "Plan an exhibition walkthrough on 15th, April 2028 at 3 PM with Harper, Grace, and Alex in the art gallery for 1 hour.",
49
+ "Schedule a meeting with the marketing team tomorrow at 2 PM in the conference room.",
50
+ "Let's do a weekly team standup every Monday at 9 AM for 30 minutes starting next week.",
51
+ "Reminder to pick up groceries this Saturday afternoon."
 
 
 
 
 
 
52
  ],
53
+ title="Calendar Event Extraction",
54
+ description="Enter text containing event information, and I'll extract the details into a JSON format."
55
  )
56
 
 
57
  if __name__ == "__main__":
58
+ demo.launch()