File size: 6,137 Bytes
d6e543b
 
c79ab01
9e430dc
acb99db
 
9e430dc
 
d6e543b
c79ab01
 
 
 
 
9e430dc
 
 
 
 
0e839b6
 
c79ab01
d6e543b
c79ab01
 
9e430dc
 
 
 
d6e543b
 
c79ab01
d6e543b
0e839b6
c79ab01
d6e543b
c79ab01
 
 
d6e543b
 
c79ab01
d6e543b
 
c79ab01
 
 
 
 
 
 
 
 
 
 
 
 
d6e543b
9e430dc
 
 
 
 
 
 
 
c79ab01
 
 
 
9e430dc
c79ab01
 
 
 
9e430dc
 
 
 
c79ab01
 
 
 
9e430dc
 
 
 
 
 
 
 
 
c79ab01
 
d6e543b
9e430dc
c79ab01
9e430dc
c79ab01
d6e543b
2a6a9cf
d6e543b
 
acb99db
 
 
 
 
 
 
 
 
 
 
9e430dc
 
 
acb99db
9e430dc
acb99db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e430dc
acb99db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e430dc
 
 
 
d6e543b
9e430dc
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import gradio as gr
from gradio_client import Client
from langgraph.graph import StateGraph, START, END
from typing import TypedDict, Optional
import io
from PIL import Image

#OPEN QUESTION: SHOULD WE PASS ALL PARAMS FROM THE ORCHESTRATOR TO THE NODES INSTEAD OF SETTING IN EACH MODULE?

# Define the state schema
class GraphState(TypedDict):
    query: str
    context: str
    result: str
    # Add orchestrator-level parameters (addressing your open question)
    reports_filter: str
    sources_filter: str
    subtype_filter: str
    year_filter: str

# node 2: retriever
def retrieve_node(state: GraphState) -> GraphState:
    client = Client("giz/chatfed_retriever")  # HF repo name
    context = client.predict(
        query=state["query"],
        reports_filter=state.get("reports_filter", ""),
        sources_filter=state.get("sources_filter", ""),
        subtype_filter=state.get("subtype_filter", ""),
        year_filter=state.get("year_filter", ""),
        api_name="/retrieve"
    )
    return {"context": context}

# node 3: generator
def generate_node(state: GraphState) -> GraphState:
    client = Client("giz/chatfed_generator")
    result = client.predict(
        query=state["query"],
        context=state["context"],
        api_name="/generate"
    )
    return {"result": result}

# build the graph
workflow = StateGraph(GraphState)

# Add nodes
workflow.add_node("retrieve", retrieve_node)
workflow.add_node("generate", generate_node)

# Add edges
workflow.add_edge(START, "retrieve")
workflow.add_edge("retrieve", "generate")
workflow.add_edge("generate", END)

# Compile the graph
graph = workflow.compile()

# Single tool for processing queries
def process_query(
    query: str,
    reports_filter: str = "",
    sources_filter: str = "",
    subtype_filter: str = "",
    year_filter: str = ""
) -> str:
    """
    Execute the ChatFed orchestration pipeline to process a user query.
    
    This function orchestrates a two-step workflow:
    1. Retrieve relevant context using the ChatFed retriever service with optional filters
    2. Generate a response using the ChatFed generator service with the retrieved context
    
    Args:
        query (str): The user's input query/question to be processed
        reports_filter (str, optional): Filter for specific report types. Defaults to "".
        sources_filter (str, optional): Filter for specific data sources. Defaults to "".
        subtype_filter (str, optional): Filter for document subtypes. Defaults to "".
        year_filter (str, optional): Filter for specific years. Defaults to "".
        
    Returns:
        str: The generated response from the ChatFed generator service
    """
    initial_state = {
        "query": query, 
        "context": "", 
        "result": "",
        "reports_filter": reports_filter or "",
        "sources_filter": sources_filter or "",
        "subtype_filter": subtype_filter or "",
        "year_filter": year_filter or ""
    }
    final_state = graph.invoke(initial_state)
    return final_state["result"]

# Simple testing interface
ui = gr.Interface(
    fn=process_query,
    inputs=gr.Textbox(lines=2, placeholder="Enter query here"),
    outputs="text",
    flagging_mode="never"
)

# Add a function to generate the graph visualization
def get_graph_visualization():
    """Generate and return the LangGraph workflow visualization as a PIL Image."""
    # Generate the graph as PNG bytes
    graph_png_bytes = graph.get_graph().draw_mermaid_png()
    
    # Convert bytes to PIL Image for Gradio display
    graph_image = Image.open(io.BytesIO(graph_png_bytes))
    return graph_image


# Guidance for ChatUI - can be removed later. Questionable whether front end even necessary. Maybe nice to show the graph.
with gr.Blocks(title="ChatFed Orchestrator") as demo:
    gr.Markdown("# ChatFed Orchestrator")
    gr.Markdown("This LangGraph server exposes MCP endpoints for the ChatUI module to call (which triggers the graph).")
    
    with gr.Row():
        # Left column - Graph visualization
        with gr.Column(scale=1):
            gr.Markdown("**Workflow Visualization**")
            graph_display = gr.Image(
                value=get_graph_visualization(), 
                label="LangGraph Workflow",
                interactive=False,
                height=300
            )
            
            # Add a refresh button for the graph
            refresh_graph_btn = gr.Button("🔄 Refresh Graph", size="sm")
            refresh_graph_btn.click(
                fn=get_graph_visualization,
                outputs=graph_display
            )
        
        # Right column - Interface and documentation  
        with gr.Column(scale=2):
            gr.Markdown("**Available MCP Tools:**")
            
            with gr.Accordion("MCP Endpoint Information", open=True):
                gr.Markdown(f"""
                **MCP Server Endpoint:** https://giz-chatfed-orchestrator.hf.space/gradio_api/mcp/sse
                
                **For ChatUI Integration:**
                ```python
                from gradio_client import Client
                
                # Connect to orchestrator
                orchestrator_client = Client("https://giz-chatfed-orchestrator.hf.space")
                
                # Basic usage (no filters)
                response = orchestrator_client.predict(
                    query="query",
                    api_name="/process_query"
                )
                
                # Advanced usage with any combination of filters
                response = orchestrator_client.predict(
                    query="query",
                    reports_filter="annual_reports",
                    sources_filter="internal", 
                    year_filter="2024",
                    api_name="/process_query"
                )
                ```
                """)

    with gr.Accordion("Quick Testing Interface", open=True):
        ui.render()

if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        mcp_server=True,
        show_error=True
    )