Spaces:
Sleeping
Sleeping
| """Server that will listen for GET and POST requests from the client.""" | |
| import base64 | |
| import time | |
| from typing import List | |
| import numpy | |
| from fastapi import FastAPI, File, Form, UploadFile | |
| from fastapi.responses import JSONResponse | |
| from utils_demo import * | |
| from utils_demo import SERVER_DIR | |
| from concrete.ml.deployment import FHEModelServer | |
| # Load the FHE server | |
| FHE_SERVER = FHEModelServer(DEPLOYMENT_DIR) | |
| # Initialize an instance of FastAPI | |
| app = FastAPI() | |
| # Define the default route | |
| def root(): | |
| """ | |
| Root endpoint of the health prediction API. | |
| Returns: | |
| dict: The welcome message. | |
| """ | |
| return {"message": "Welcome to your encrypted anonymization use-case with FHE!"} | |
| def send_input( | |
| user_id: str = Form(), | |
| files: List[UploadFile] = File(), | |
| ): | |
| """Send the inputs to the server.""" | |
| # Save the files using the above paths | |
| write_bytes(SERVER_DIR / f"{user_id}_valuation_key", files[0].file.read()) | |
| write_bytes(SERVER_DIR / f"{user_id}_encrypted_input", files[1].file.read()) | |
| write_bytes(SERVER_DIR / f"{user_id}_encrypted_len_input", files[2].file.read()) | |
| def run_fhe( | |
| user_id: str = Form(), | |
| ): | |
| """Inference in FHE.""" | |
| evaluation_key_path = SERVER_DIR / f"{user_id}_valuation_key" | |
| encrypted_input_path = SERVER_DIR / f"{user_id}_encrypted_input" | |
| encrypted_input_len_path = SERVER_DIR / f"{user_id}_encrypted_len_input" | |
| # Read the files (Evaluation key + Encrypted symptoms) using the above paths | |
| with encrypted_input_path.open("rb") as encrypted_output_file, evaluation_key_path.open( | |
| "rb" | |
| ) as evaluation_key_file, encrypted_input_len_path.open("rb") as lenght: | |
| evaluation_key = evaluation_key_file.read() | |
| encrypted_tokens = encrypted_output_file.read() | |
| length = int.from_bytes(lenght.read(), "big") | |
| timing, encrypted_output = [], [] | |
| for i in range(0, len(encrypted_tokens), length): | |
| enc_x = encrypted_tokens[i : i + length] | |
| start_time = time.time() | |
| enc_y = FHE_SERVER.run(enc_x, evaluation_key) | |
| timing.append(round(time.time() - start_time, 2)) | |
| encrypted_output.append(enc_y) | |
| # Write the files | |
| write_bytes(SERVER_DIR / f"{user_id}_encrypted_output", b"".join(encrypted_output)) | |
| write_bytes( | |
| SERVER_DIR / f"{user_id}_encrypted_output_len", len(encrypted_output[0]).to_bytes(10, "big") | |
| ) | |
| return JSONResponse(content=numpy.mean(timing)) | |
| def get_output(user_id: str = Form()): | |
| """Retrieve the encrypted output from the server.""" | |
| # Path where the encrypted output is saved | |
| encrypted_output_path = SERVER_DIR / f"{user_id}_encrypted_output" | |
| encrypted_output_len_path = SERVER_DIR / f"{user_id}_encrypted_output_len" | |
| # Read the file using the above path | |
| with encrypted_output_path.open("rb") as f: | |
| encrypted_output = f.read() | |
| # Read the file using the above path | |
| with encrypted_output_len_path.open("rb") as f: | |
| length = f.read() | |
| time.sleep(1) | |
| # Encode the binary data to a format suitable for JSON serialization | |
| content = { | |
| "encrypted_output": base64.b64encode(encrypted_output).decode("utf-8"), | |
| "length": base64.b64encode(length).decode("utf-8"), | |
| } | |
| # Send the encrypted output | |
| return JSONResponse(content) | |