from fastapi import FastAPI, File, Form, UploadFile from fastapi.responses import JSONResponse, Response from concrete.ml.deployment import FHEModelServer import numpy as np from concrete.ml.deployment import FHEModelClient import subprocess from pathlib import Path from utils import ( CLIENT_DIR, CURRENT_DIR, DEPLOYMENT_DIR, SERVER_DIR, INPUT_BROWSER_LIMIT, KEYS_DIR, SERVER_URL, TARGET_COLUMNS, TRAINING_FILENAME, clean_directory, get_disease_name, load_data, pretty_print, ) import time from typing import List # Load the FHE server # FHE_SERVER = FHEModelServer(DEPLOYMENT_DIR) app = FastAPI() @app.get("/") def greet_json(): return {"Hello": "World!"} def root(): """ Root endpoint of the health prediction API. Returns: dict: The welcome message. """ return {"message": "Welcome to your disease prediction with FHE!"} @app.post("/send_input") def send_input( user_id: str = Form(), files: List[UploadFile] = File(), ): """Send the inputs to the server.""" print("\nSend the data to the server ............\n") # Receive the Client's files (Evaluation key + Encrypted symptoms) evaluation_key_path = SERVER_DIR / f"{user_id}_valuation_key" encrypted_input_path = SERVER_DIR / f"{user_id}_encrypted_input" # Save the files using the above paths with encrypted_input_path.open("wb") as encrypted_input, evaluation_key_path.open( "wb" ) as evaluation_key: encrypted_input.write(files[0].file.read()) evaluation_key.write(files[1].file.read()) @app.post("/run_fhe") def run_fhe( user_id: str = Form(), ): """Inference in FHE.""" print("\nRun in FHE in the server ............\n") evaluation_key_path = SERVER_DIR / f"{user_id}_valuation_key" encrypted_input_path = SERVER_DIR / f"{user_id}_encrypted_input" # Read the files (Evaluation key + Encrypted symptoms) using the above paths with encrypted_input_path.open("rb") as encrypted_output_file, evaluation_key_path.open( "rb" ) as evaluation_key_file: encrypted_output = encrypted_output_file.read() evaluation_key = evaluation_key_file.read() # Run the FHE execution start = time.time() encrypted_output = FHE_SERVER.run(encrypted_output, evaluation_key) assert isinstance(encrypted_output, bytes) fhe_execution_time = round(time.time() - start, 2) # Retrieve the encrypted output path encrypted_output_path = SERVER_DIR / f"{user_id}_encrypted_output" # Write the file using the above path with encrypted_output_path.open("wb") as f: f.write(encrypted_output) return JSONResponse(content=fhe_execution_time) @app.post("/get_output") def get_output(user_id: str = Form()): """Retrieve the encrypted output from the server.""" print("\nGet the output from the server ............\n") # Path where the encrypted output is saved encrypted_output_path = SERVER_DIR / f"{user_id}_encrypted_output" # Read the file using the above path with encrypted_output_path.open("rb") as f: encrypted_output = f.read() time.sleep(1) # Send the encrypted output return Response(encrypted_output) @app.post("/generate_keys") def generate_keys(user_symptoms: List[str]): """ Endpoint to generate keys based on user symptoms. Args: user_symptoms (List[str]): The list of user symptoms. Returns: JSONResponse: A response containing the generated keys and user ID. """ def is_none(obj): return obj is None or (obj is not None and len(obj) == 0) # Call the key generation function clean_directory() if is_none(user_symptoms): return JSONResponse( status_code=400, content={"error": "Please submit your symptoms first."} ) # Generate a random user ID user_id = np.random.randint(0, 2**32) print(f"Your user ID is: {user_id}....") client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}") client.load() # Creates the private and evaluation keys on the client side client.generate_private_and_evaluation_keys() # Get the serialized evaluation keys serialized_evaluation_keys = client.get_serialized_evaluation_keys() assert isinstance(serialized_evaluation_keys, bytes) # Save the evaluation key evaluation_key_path = KEYS_DIR / f"{user_id}/evaluation_key" with evaluation_key_path.open("wb") as f: f.write(serialized_evaluation_keys) serialized_evaluation_keys_shorten_hex = serialized_evaluation_keys.hex()[:INPUT_BROWSER_LIMIT] return JSONResponse( content={ "user_id": user_id, "evaluation_key": serialized_evaluation_keys_shorten_hex, "evaluation_key_size": f"{len(serialized_evaluation_keys) / (10**6):.2f} MB" } ) @app.post("/run_dev") def run_dev_script(): """ Endpoint to execute the dev.py script to generate deployment files. Returns: JSONResponse: Success message or error details. """ try: # Define the path to dev.py dev_script_path = Path(__file__).parent / "dev.py" # Execute the dev.py script result = subprocess.run( ["python", str(dev_script_path)], capture_output=True, text=True, check=True ) # Return success message with output return JSONResponse( content={"message": "dev.py executed successfully!", "output": result.stdout} ) except subprocess.CalledProcessError as e: # Return error message in case of failure return JSONResponse( status_code=500, content={"error": "Failed to execute dev.py", "details": e.stderr} )