Spaces:
Paused
Paused
use sentence split for translation
Browse files- app.py +28 -13
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import random
|
|
|
|
| 3 |
import torch
|
| 4 |
from transformers import MT5Tokenizer, MT5ForConditionalGeneration
|
| 5 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
@@ -11,32 +12,46 @@ translator.eval()
|
|
| 11 |
summarizer.eval()
|
| 12 |
translator.to(device)
|
| 13 |
summarizer.to(device)
|
| 14 |
-
|
| 15 |
|
| 16 |
def generate_output(
|
| 17 |
task,
|
| 18 |
text,
|
| 19 |
):
|
| 20 |
-
inputs = tokenizer(
|
| 21 |
-
[text],
|
| 22 |
-
padding="longest",
|
| 23 |
-
max_length=1024,
|
| 24 |
-
truncation=True,
|
| 25 |
-
return_tensors="pt",
|
| 26 |
-
).to(device)
|
| 27 |
if task == 'Translation':
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
elif task == 'Summarization':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
outputs = summarizer.generate(
|
| 34 |
**inputs,
|
| 35 |
max_new_tokens=256,
|
| 36 |
)
|
|
|
|
| 37 |
else:
|
| 38 |
raise ValueError("task undefined!")
|
| 39 |
-
gen_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 40 |
return gen_text
|
| 41 |
|
| 42 |
TASKS = ["Translation", "Summarization"]
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import random
|
| 3 |
+
import spacy
|
| 4 |
import torch
|
| 5 |
from transformers import MT5Tokenizer, MT5ForConditionalGeneration
|
| 6 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 12 |
summarizer.eval()
|
| 13 |
translator.to(device)
|
| 14 |
summarizer.to(device)
|
| 15 |
+
nlp = spacy.load("en_core_web_sm")
|
| 16 |
|
| 17 |
def generate_output(
|
| 18 |
task,
|
| 19 |
text,
|
| 20 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
if task == 'Translation':
|
| 22 |
+
sentences = [sent.text.strip() for sent in nlp(text).sents] # List[spacy.tokens.span.Span]
|
| 23 |
+
gen_texts = []
|
| 24 |
+
for sentence in sentences:
|
| 25 |
+
inputs = tokenizer(
|
| 26 |
+
[sentence],
|
| 27 |
+
padding="longest",
|
| 28 |
+
max_length=1024,
|
| 29 |
+
truncation=True,
|
| 30 |
+
return_tensors="pt",
|
| 31 |
+
).to(device)
|
| 32 |
+
outputs = translator.generate(
|
| 33 |
+
**inputs,
|
| 34 |
+
max_new_tokens=256,
|
| 35 |
+
)
|
| 36 |
+
gen_text_ = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 37 |
+
gen_texts.append(gen_text_)
|
| 38 |
+
return " ".join(gen_texts)
|
| 39 |
+
|
| 40 |
elif task == 'Summarization':
|
| 41 |
+
inputs = tokenizer(
|
| 42 |
+
[text],
|
| 43 |
+
padding="longest",
|
| 44 |
+
max_length=1024,
|
| 45 |
+
truncation=True,
|
| 46 |
+
return_tensors="pt",
|
| 47 |
+
).to(device)
|
| 48 |
outputs = summarizer.generate(
|
| 49 |
**inputs,
|
| 50 |
max_new_tokens=256,
|
| 51 |
)
|
| 52 |
+
gen_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 53 |
else:
|
| 54 |
raise ValueError("task undefined!")
|
|
|
|
| 55 |
return gen_text
|
| 56 |
|
| 57 |
TASKS = ["Translation", "Summarization"]
|
requirements.txt
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
torch>=1.10
|
| 2 |
transformers>=4.11.3
|
| 3 |
sentencepiece
|
|
|
|
|
|
| 1 |
torch>=1.10
|
| 2 |
transformers>=4.11.3
|
| 3 |
sentencepiece
|
| 4 |
+
spacy
|