Spaces:
Running
Running
File size: 9,358 Bytes
81d65e8 b327b2e 81d65e8 a0d66c9 39f9011 81d65e8 88b1e11 81d65e8 038148f 81d65e8 be38ebe 81d65e8 32c181d 74f30e9 b327b2e be38ebe b327b2e 74f30e9 81d65e8 88b1e11 81d65e8 6e289c3 81d65e8 038148f 81d65e8 88b1e11 81d65e8 dc155bd 272dccb bcaf9e5 81d65e8 cad1c1a 4badf9e 646c2a1 4badf9e cad1c1a 81d65e8 88b1e11 81d65e8 f81af70 88b1e11 81d65e8 be38ebe 81d65e8 be38ebe ea72b2a be38ebe 81d65e8 4f5263b 038148f 4f5263b 038148f 4f5263b 038148f 4f5263b be38ebe 81d65e8 88b1e11 81d65e8 c96b784 81d65e8 cad1c1a e405bdb cad1c1a 4badf9e 81d65e8 038148f 81d65e8 0db653d 038148f 81d65e8 3b6fc32 81d65e8 3b6fc32 88b1e11 81d65e8 74f30e9 81d65e8 7659e10 0db653d f36b34e f0828ea f36b34e 7659e10 9c05832 0e1ad86 2bfa4fe bcaf9e5 71fd45b ada6a7b 9c05832 601bf30 be38ebe 601bf30 4badf9e cad1c1a 4badf9e a0d66c9 038148f 9f8e539 038148f 4badf9e 96f4bcd 038148f 96f4bcd 9f8e539 f0828ea 96f4bcd 81d65e8 0508364 81d65e8 88b1e11 9c05832 88b1e11 81d65e8 4badf9e cfc1783 7659e10 7546941 7659e10 81d65e8 88b1e11 038148f 88b1e11 bcaf9e5 81d65e8 4badf9e 646c2a1 4badf9e 81d65e8 88b1e11 81d65e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import argparse
import pprint as pp
import logging
import time
import gradio as gr
import torch
from transformers import pipeline
from utils import make_mailto_form, postprocess, clear, make_email_link
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
use_gpu = torch.cuda.is_available()
def generate_text(
prompt: str,
gen_length=64,
penalty_alpha=0.6,
top_k=6,
length_penalty=1.0,
# perma params (not set by user)
abs_max_length=512,
verbose=False,
):
"""
generate_text - generate text using the text generation pipeline
:param str prompt: the prompt to use for the text generation pipeline
:param int gen_length: the number of tokens to generate
:param float penalty_alpha: the penalty alpha for the text generation pipeline (contrastive search)
:param int top_k: the top k for the text generation pipeline (contrastive search)
:param int abs_max_length: the absolute max length for the text generation pipeline
:param bool verbose: verbose output
:return str: the generated text
"""
global generator
if verbose:
logging.info(f"Generating text from prompt:\n\n{prompt}")
logging.info(
pp.pformat(
f"params:\tmax_length={gen_length}, penalty_alpha={penalty_alpha}, top_k={top_k}, length_penalty={length_penalty}"
)
)
st = time.perf_counter()
input_tokens = generator.tokenizer(prompt)
input_len = len(input_tokens["input_ids"])
if input_len > abs_max_length:
logging.info(f"Input too long {input_len} > {abs_max_length}, may cause errors")
result = generator(
prompt,
max_length=gen_length + input_len, # old API for generation
min_length=input_len + 4,
penalty_alpha=penalty_alpha,
top_k=top_k,
length_penalty=length_penalty,
) # generate
response = result[0]["generated_text"]
rt = time.perf_counter() - st
if verbose:
logging.info(f"Generated text: {response}")
rt_string = f"Generation time: {rt:.2f}s"
logging.info(rt_string)
formatted_email = postprocess(response)
return make_mailto_form(body=formatted_email), formatted_email
def load_emailgen_model(model_tag: str):
"""
load_emailgen_model - load a text generation pipeline for email generation
Args:
model_tag (str): the huggingface model tag to load
Returns:
transformers.pipelines.TextGenerationPipeline: the text generation pipeline
"""
global generator
generator = pipeline(
"text-generation",
model_tag,
device=0 if use_gpu else -1,
)
def get_parser():
"""
get_parser - a helper function for the argparse module
"""
parser = argparse.ArgumentParser(
description="Text Generation demo for postbot",
)
parser.add_argument(
"-m",
"--model",
required=False,
type=str,
default="postbot/distilgpt2-emailgen-V2",
help="Pass an different huggingface model tag to use a custom model",
)
parser.add_argument(
"-l",
"--max_length",
required=False,
type=int,
default=40,
help="default max length of the generated text",
)
parser.add_argument(
"-a",
"--penalty_alpha",
type=float,
default=0.6,
help="The penalty alpha for the text generation pipeline (contrastive search) - default 0.6",
)
parser.add_argument(
"-k",
"--top_k",
type=int,
default=6,
help="The top k for the text generation pipeline (contrastive search) - default 6",
)
parser.add_argument(
"-v",
"--verbose",
required=False,
action="store_true",
help="Verbose output",
)
return parser
default_prompt = """
Hello,
Following up on last week's bubblegum shipment, I"""
available_models = [
"postbot/distilgpt2-emailgen-V2",
"postbot/distilgpt2-emailgen",
"postbot/gpt2-medium-emailgen",
"postbot/pythia-160m-hq-emails",
]
if __name__ == "__main__":
logging.info("\n\n\nStarting new instance of app.py")
args = get_parser().parse_args()
logging.info(f"received args:\t{args}")
model_tag = args.model
verbose = args.verbose
max_length = args.max_length
top_k = args.top_k
alpha = args.penalty_alpha
assert top_k > 0, "top_k must be greater than 0"
assert alpha >= 0.0 and alpha <= 1.0, "penalty_alpha must be between 0 and 1"
logging.info(f"Loading model: {model_tag}, use GPU = {use_gpu}")
generator = pipeline(
"text-generation",
model_tag,
device=0 if use_gpu else -1,
)
demo = gr.Blocks()
logging.info("launching interface...")
with demo:
gr.Markdown("# Auto-Complete Emails - Demo")
gr.Markdown(
"Enter part of an email, and a text-gen model will complete it! See details below. "
)
gr.Markdown("---")
with gr.Column():
gr.Markdown("## Generate Text")
gr.Markdown("Edit the prompt and parameters and press **Generate**!")
prompt_text = gr.Textbox(
lines=4,
label="Email Prompt",
value=default_prompt,
)
with gr.Row():
clear_button = gr.Button(
value="Clear Prompt",
)
num_gen_tokens = gr.Slider(
label="Generation Tokens",
value=max_length,
maximum=96,
minimum=16,
step=8,
)
generate_button = gr.Button(
value="Generate!",
variant="primary",
)
gr.Markdown("---")
gr.Markdown("### Results")
# put a large HTML placeholder here
generated_email = gr.Textbox(
label="Generated Text",
placeholder="This is where the generated text will appear",
interactive=False,
)
email_mailto_button = gr.HTML(
"<i>a clickable email button will appear here</i>"
)
gr.Markdown("---")
gr.Markdown("## Advanced Options")
gr.Markdown(
"This demo generates text via the new [contrastive search](https://huggingface.co/blog/introducing-csearch). See the csearch blog post for details on the parameters or [here](https://huggingface.co/blog/how-to-generate), for general decoding."
)
with gr.Row():
model_name = gr.Dropdown(
choices=available_models,
label="Choose a model",
value=model_tag,
)
load_model_button = gr.Button(
"Load Model",
variant="secondary",
)
with gr.Row():
contrastive_top_k = gr.Radio(
choices=[2, 4, 6, 8],
label="Top K",
value=top_k,
)
penalty_alpha = gr.Slider(
label="Penalty Alpha",
value=alpha,
maximum=1.0,
minimum=0.0,
step=0.1,
)
length_penalty = gr.Slider(
minimum=0.5,
maximum=1.0,
label="Length Penalty",
value=1.0,
step=0.1,
)
gr.Markdown("---")
with gr.Column():
gr.Markdown("## About")
gr.Markdown(
"[This model](https://huggingface.co/postbot/distilgpt2-emailgen) is a fine-tuned version of distilgpt2 on a dataset of 100k emails sourced from the internet, including the classic `aeslc` dataset.\n\nCheck out the model card for details on notebook & command line usage."
)
gr.Markdown(
"The intended use of this model is to provide suggestions to _auto-complete_ the rest of your email. Said another way, it should serve as a **tool to write predictable emails faster**. It is not intended to write entire emails from scratch; at least **some input** is required to guide the direction of the model.\n\nPlease verify any suggestions by the model for A) False claims and B) negation statements **before** accepting/sending something."
)
gr.Markdown("---")
clear_button.click(
fn=clear,
inputs=[prompt_text],
outputs=[prompt_text],
)
generate_button.click(
fn=generate_text,
inputs=[
prompt_text,
num_gen_tokens,
penalty_alpha,
contrastive_top_k,
length_penalty,
],
outputs=[email_mailto_button, generated_email],
)
load_model_button.click(
fn=load_emailgen_model,
inputs=[model_name],
outputs=[],
)
demo.launch(
enable_queue=True,
share=True, # for local testing
)
|