pabloce's picture
Update app.py
1ea65ea verified
raw
history blame
7.15 kB
import spaces
import logging
import gradio as gr
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
from llama_cpp_agent.llm_output_settings import (
LlmStructuredOutputSettings,
LlmStructuredOutputType,
)
from llama_cpp_agent.tools import WebSearchTool
from llama_cpp_agent.prompt_templates import web_search_system_prompt, research_system_prompt
from ui import css, PLACEHOLDER
from utils import CitingSources
from settings import get_context_by_model, get_messages_formatter_type
llm = None
llm_model = None
hf_hub_download(
repo_id="bartowski/Mistral-7B-Instruct-v0.3-GGUF",
filename="Mistral-7B-Instruct-v0.3-Q6_K.gguf",
local_dir="./models"
)
hf_hub_download(
repo_id="bartowski/Meta-Llama-3-8B-Instruct-GGUF",
filename="Meta-Llama-3-8B-Instruct-Q6_K.gguf",
local_dir="./models"
)
hf_hub_download(
repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF",
filename="mixtral-8x7b-instruct-v0.1.Q5_K_M.gguf",
local_dir="./models"
)
examples = [
["latest news about Yann LeCun"],
["Latest news site:github.blog"],
["Where I can find best hotel in Galapagos, Ecuador intitle:hotel"],
["filetype:pdf intitle:python"]
]
def write_message_to_user():
"""
Let you write a message to the user.
"""
return "Please write the message to the user."
@spaces.GPU(duration=120)
def respond(
message,
history: list[tuple[str, str]],
model,
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
):
global llm
global llm_model
chat_template = get_messages_formatter_type(model)
if llm is None or llm_model != model:
llm = Llama(
model_path=f"models/{model}",
flash_attn=True,
n_gpu_layers=81,
n_batch=1024,
n_ctx=get_context_by_model(model),
)
llm_model = model
provider = LlamaCppPythonProvider(llm)
logging.info(f"Loaded chat examples: {chat_template}")
search_tool = WebSearchTool(
llm_provider=provider,
message_formatter_type=chat_template,
max_tokens_search_results=12000,
max_tokens_per_summary=2048,
)
web_search_agent = LlamaCppAgent(
provider,
system_prompt=web_search_system_prompt,
predefined_messages_formatter_type=chat_template,
debug_output=True,
)
answer_agent = LlamaCppAgent(
provider,
system_prompt=research_system_prompt,
predefined_messages_formatter_type=chat_template,
debug_output=True,
)
settings = provider.get_provider_default_settings()
settings.stream = False
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
output_settings = LlmStructuredOutputSettings.from_functions(
[search_tool.get_tool()]
)
messages = BasicChatHistory()
for msn in history:
user = {"role": Roles.user, "content": msn[0]}
assistant = {"role": Roles.assistant, "content": msn[1]}
messages.add_message(user)
messages.add_message(assistant)
result = web_search_agent.get_chat_response(
message,
llm_sampling_settings=settings,
structured_output_settings=output_settings,
add_message_to_chat_history=False,
add_response_to_chat_history=False,
print_output=False,
)
outputs = ""
settings.stream = True
response_text = answer_agent.get_chat_response(
f"Write a detailed and complete research document that fulfills the following user request: '{message}', based on the information from the web below.\n\n" +
result[0]["return_value"],
role=Roles.tool,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False,
)
for text in response_text:
outputs += text
yield outputs
output_settings = LlmStructuredOutputSettings.from_pydantic_models(
[CitingSources], LlmStructuredOutputType.object_instance
)
citing_sources = answer_agent.get_chat_response(
"Cite the sources you used in your response.",
role=Roles.tool,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=False,
structured_output_settings=output_settings,
print_output=False,
)
outputs += "\n\nSources:\n"
outputs += "\n".join(citing_sources.sources)
yield outputs
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Dropdown([
'Mistral-7B-Instruct-v0.3-Q6_K.gguf',
'mixtral-8x7b-instruct-v0.1.Q5_K_M.gguf',
'Meta-Llama-3-8B-Instruct-Q6_K.gguf'
],
value="Mistral-7B-Instruct-v0.3-Q6_K.gguf",
label="Model"
),
gr.Textbox(value=web_search_system_prompt, label="System message"),
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.45, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
),
gr.Slider(
minimum=0,
maximum=100,
value=40,
step=1,
label="Top-k",
),
gr.Slider(
minimum=0.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition penalty",
),
],
theme=gr.themes.Soft(
primary_hue="orange",
secondary_hue="amber",
neutral_hue="gray",
font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
body_background_fill_dark="#0c0505",
block_background_fill_dark="#0c0505",
block_border_width="1px",
block_title_background_fill_dark="#1b0f0f",
input_background_fill_dark="#140b0b",
button_secondary_background_fill_dark="#140b0b",
border_color_accent_dark="#1b0f0f",
border_color_primary_dark="#1b0f0f",
background_fill_secondary_dark="#0c0505",
color_accent_soft_dark="transparent",
code_background_fill_dark="#140b0b"
),
css=css,
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
submit_btn="Send",
cache_examples=False,
examples = (examples),
description="Llama-cpp-agent: Chat with DuckDuckGo Agent",
analytics_enabled=False,
chatbot=gr.Chatbot(
scale=1,
placeholder=PLACEHOLDER,
show_copy_button=True
)
)
if __name__ == "__main__":
demo.launch()