File size: 7,261 Bytes
d9528c3
e76be92
d9528c3
e76be92
 
e3f3865
 
8ecb9de
e3f3865
 
e76be92
 
 
 
 
 
ccec6b0
 
37b0be8
7772d47
d9528c3
3edef84
6de815a
7772d47
d9528c3
2030d72
 
 
 
 
b3a6cb3
 
 
 
 
 
 
 
 
 
 
 
d9528c3
7772d47
 
 
 
 
 
 
d9528c3
 
e76be92
 
093e7cd
 
 
 
 
 
 
d9528c3
093e7cd
 
 
 
 
 
 
 
 
d9528c3
 
4671506
7c57164
d9528c3
 
e9eeeec
d9528c3
 
e76be92
 
 
 
 
 
 
d9528c3
e76be92
d9528c3
e76be92
d9528c3
e76be92
d9528c3
e76be92
 
 
 
 
 
 
 
d9528c3
e76be92
d9528c3
 
 
e76be92
d9528c3
292a74e
e76be92
7772d47
e76be92
 
 
d9528c3
 
 
e76be92
 
d9528c3
 
e76be92
 
 
 
 
 
 
 
d9528c3
7772d47
d9528c3
e76be92
 
 
 
 
 
 
 
 
 
 
 
 
 
d9528c3
 
e76be92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7772d47
d9528c3
 
 
4671506
093e7cd
 
 
4671506
093e7cd
4671506
 
e76be92
d9528c3
22ca4ed
d9528c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c0aa6e
093e7cd
 
6c0aa6e
 
e6a1f9d
 
6c0aa6e
d414108
e6f3133
 
69f1d49
d414108
e6a1f9d
69f1d49
 
6c0aa6e
 
 
 
 
 
dde1a6b
89147ab
e76be92
e5e9b2a
 
 
 
 
6c0aa6e
d9528c3
 
7772d47
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import spaces
import logging
import gradio as gr
from huggingface_hub import hf_hub_download

from llama_cpp import Llama
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
from llama_cpp_agent.llm_output_settings import (
    LlmStructuredOutputSettings,
    LlmStructuredOutputType,
)
from llama_cpp_agent.tools import WebSearchTool
from llama_cpp_agent.prompt_templates import web_search_system_prompt, research_system_prompt
from ui import css, PLACEHOLDER
from utils import CitingSources
from settings import get_context_by_model, get_messages_formatter_type

hf_hub_download(
    repo_id="bartowski/Mistral-7B-Instruct-v0.3-GGUF",
    filename="Mistral-7B-Instruct-v0.3-Q6_K.gguf",
    local_dir="./models"
)
hf_hub_download(
    repo_id="bartowski/Meta-Llama-3-8B-Instruct-GGUF",
    filename="Meta-Llama-3-8B-Instruct-Q6_K.gguf",
    local_dir="./models"
)
hf_hub_download(
    repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF",
    filename="mixtral-8x7b-instruct-v0.1.Q5_K_M.gguf",
    local_dir="./models"
)

examples = [
    ["latest news about Yann LeCun"],
    ["Latest news site:github.blog"],
    ["Where I can find best hotel in Galapagos, Ecuador intitle:hotel"],
    ["filetype:pdf intitle:python"]
]

def write_message_to_user():
    """
    Let you write a message to the user.
    """
    return "Please write the message to the user."


@spaces.GPU(duration=120)
def respond(
    message,
    history: list[tuple[str, str]],
    model = 'Mistral-7B-Instruct-v0.3-Q6_K.gguf',
    system_message = 'Helpful assistant',
    max_tokens = 2048,
    temperature = 0.45,
    top_p = 0.95,
    top_k = 40,
    repeat_penalty = 1.1,
):

    if "Mistral" in model:
        model = 'Mistral-7B-Instruct-v0.3-Q6_K.gguf'        
    elif "Mixtral" in model:
        model = 'mixtral-8x7b-instruct-v0.1.Q5_K_M.gguf'
    else:
        model = 'Meta-Llama-3-8B-Instruct-Q6_K.gguf'
    yield model
    
    chat_template = get_messages_formatter_type(model)
    llm = Llama(
        model_path=f"models/{model}",
        flash_attn=True,
        n_gpu_layers=81,
        n_batch=1024,
        n_ctx=get_context_by_model(model),
    )
    provider = LlamaCppPythonProvider(llm)
    logging.info(f"Loaded chat examples: {chat_template}")
    search_tool = WebSearchTool(
        llm_provider=provider,
        message_formatter_type=chat_template,
        max_tokens_search_results=12000,
        max_tokens_per_summary=2048,
    )

    web_search_agent = LlamaCppAgent(
        provider,
        system_prompt=web_search_system_prompt,
        predefined_messages_formatter_type=chat_template,
        debug_output=True,
    )

    answer_agent = LlamaCppAgent(
        provider,
        system_prompt=research_system_prompt,
        predefined_messages_formatter_type=chat_template,
        debug_output=True,
    )

    settings = provider.get_provider_default_settings()
    settings.stream = False
    settings.temperature = temperature
    settings.top_k = top_k
    settings.top_p = top_p

    settings.max_tokens = max_tokens
    settings.repeat_penalty = repeat_penalty

    output_settings = LlmStructuredOutputSettings.from_functions(
        [search_tool.get_tool()]
    )

    messages = BasicChatHistory()

    for msn in history:
        user = {"role": Roles.user, "content": msn[0]}
        assistant = {"role": Roles.assistant, "content": msn[1]}
        messages.add_message(user)
        messages.add_message(assistant)

    result = web_search_agent.get_chat_response(
        message,
        llm_sampling_settings=settings,
        structured_output_settings=output_settings,
        add_message_to_chat_history=False,
        add_response_to_chat_history=False,
        print_output=False,
    )

    outputs = ""

    settings.stream = True
    response_text = answer_agent.get_chat_response(
        f"Write a detailed and complete research document that fulfills the following user request: '{message}', based on the information from the web below.\n\n" +
        result[0]["return_value"],
        role=Roles.tool,
        llm_sampling_settings=settings,
        chat_history=messages,
        returns_streaming_generator=True,
        print_output=False,
    )

    for text in response_text:
        outputs += text
        yield outputs

    output_settings = LlmStructuredOutputSettings.from_pydantic_models(
        [CitingSources], LlmStructuredOutputType.object_instance
    )

    citing_sources = answer_agent.get_chat_response(
        "Cite the sources you used in your response.",
        role=Roles.tool,
        llm_sampling_settings=settings,
        chat_history=messages,
        returns_streaming_generator=False,
        structured_output_settings=output_settings,
        print_output=False,
    )
    outputs += "\n\nSources:\n"
    outputs += "\n".join(citing_sources.sources)
    yield outputs


demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Dropdown([
            'Mistral 7B Instruct v0.3',
            'Mixtral 8x7b Instruct v0.1',
            'Llama 3 8B Instruct'
        ],
            value="Mistral 7B Instruct v0.3",
            label="Model"
        ),
        gr.Textbox(value=web_search_system_prompt, label="System message"),
        gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.45, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p",
        ),
        gr.Slider(
            minimum=0,
            maximum=100,
            value=40,
            step=1,
            label="Top-k",
        ),
        gr.Slider(
            minimum=0.0,
            maximum=2.0,
            value=1.1,
            step=0.1,
            label="Repetition penalty",
        ),
    ],
    theme=gr.themes.Soft(
        primary_hue="green",
        secondary_hue="lime",
        neutral_hue="gray",
        font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
            body_background_fill_dark="#0c0505",
            block_background_fill_dark="#0c0505",
            block_border_width="1px",
            block_title_background_fill_dark="#1b0f0f",
            input_background_fill_dark="#140b0b",
            button_secondary_background_fill_dark="#140b0b",
            border_color_accent_dark="#1b0f0f",
            border_color_primary_dark="#1b0f0f",
            background_fill_secondary_dark="#0c0505",
            color_accent_soft_dark="transparent",
            code_background_fill_dark="#140b0b"
        ),
        css=css,
        retry_btn="Retry",
        undo_btn="Undo",
        clear_btn="Clear",
        submit_btn="Send",
        examples = (examples),
        description="Llama-cpp-agent: Chat Web Search DDG Agent",
        analytics_enabled=False,
        chatbot=gr.Chatbot(
            scale=1,
            placeholder=PLACEHOLDER,
            show_copy_button=True
        )
    )

if __name__ == "__main__":
    demo.launch()