File size: 13,135 Bytes
d9528c3
e76be92
d9528c3
e76be92
 
e3f3865
 
8ecb9de
e3f3865
 
e76be92
 
 
 
 
 
 
 
7772d47
d9528c3
3edef84
6de815a
7772d47
d9528c3
2030d72
 
 
 
 
b3a6cb3
 
 
 
 
 
 
 
 
 
 
 
d9528c3
 
 
 
 
 
 
 
69f1d49
 
 
 
 
d9528c3
eea59e2
d9528c3
 
eea59e2
d9528c3
 
e6a1f9d
d9528c3
 
 
89147ab
5287603
89147ab
4671506
89147ab
 
 
6b14cc0
8c02929
91e5cf9
71f340b
91e5cf9
 
4671506
 
 
91e5cf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89147ab
 
 
 
 
70e4159
 
6de815a
b3a6cb3
6b8c210
70e4159
 
7772d47
d9528c3
b3a6cb3
 
d9528c3
b3a6cb3
d9528c3
b3a6cb3
bb9e162
b3a6cb3
9dce59b
d9528c3
bb9e162
d9528c3
7772d47
 
 
 
 
 
 
 
d9528c3
 
e76be92
 
4671506
e76be92
 
 
 
 
 
d9528c3
 
 
4671506
7c57164
d9528c3
 
e9eeeec
d9528c3
 
e76be92
 
 
 
 
 
 
d9528c3
e76be92
d9528c3
e76be92
d9528c3
e76be92
d9528c3
e76be92
 
 
 
 
 
 
 
d9528c3
e76be92
d9528c3
 
 
e76be92
d9528c3
292a74e
e76be92
7772d47
e76be92
 
 
d9528c3
 
 
e76be92
 
d9528c3
 
e76be92
 
 
 
 
 
 
 
d9528c3
7772d47
d9528c3
e76be92
 
 
 
 
 
 
 
 
 
 
 
 
 
d9528c3
 
e76be92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7772d47
d9528c3
 
 
4671506
 
b3a6cb3
4671506
 
 
 
 
e76be92
d9528c3
22ca4ed
d9528c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c0aa6e
9ff7330
 
6c0aa6e
 
e6a1f9d
 
6c0aa6e
d414108
e6f3133
 
69f1d49
d414108
e6a1f9d
69f1d49
 
6c0aa6e
 
 
 
 
 
dde1a6b
89147ab
e76be92
e5e9b2a
 
 
 
 
6c0aa6e
d9528c3
 
7772d47
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import spaces
import logging
import gradio as gr
from huggingface_hub import hf_hub_download

from llama_cpp import Llama
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
from llama_cpp_agent.llm_output_settings import (
    LlmStructuredOutputSettings,
    LlmStructuredOutputType,
)
from llama_cpp_agent.tools import WebSearchTool
from llama_cpp_agent.prompt_templates import web_search_system_prompt, research_system_prompt
from style import css, PLACEHOLDER
from utils import CitingSources

hf_hub_download(
    repo_id="bartowski/Mistral-7B-Instruct-v0.3-GGUF",
    filename="Mistral-7B-Instruct-v0.3-Q6_K.gguf",
    local_dir="./models"
)
hf_hub_download(
    repo_id="bartowski/Meta-Llama-3-8B-Instruct-GGUF",
    filename="Meta-Llama-3-8B-Instruct-Q6_K.gguf",
    local_dir="./models"
)
hf_hub_download(
    repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF",
    filename="mixtral-8x7b-instruct-v0.1.Q5_K_M.gguf",
    local_dir="./models"
)

examples = [
    ["latest news about Yann LeCun"],
    ["Latest news site:github.blog"],
    ["Where I can find best hotel in Galapagos, Ecuador intitle:hotel"],
    ["filetype:pdf intitle:python"]
]

css = """
.message-row {
    justify-content: space-evenly !important;
}
.message-bubble-border {
    border-radius: 6px !important;
}
.message-buttons-bot, .message-buttons-user {
    right: 10px !important;
    left: auto !important;
    bottom: 2px !important;
}
.dark.message-bubble-border {
    border-color: #1b0f0f !important;
}
.dark.user {
    background: #140b0b !important;
}
.dark.assistant.dark, .dark.pending.dark {
    background: #0c0505 !important;
}
"""

PLACEHOLDER = """
<div class="message-bubble-border" style="display:flex; max-width: 600px; border-width: 1px; border-radius: 8px; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); backdrop-filter: blur(10px);">
    <figure style="margin: 0;">
        <img src="https://huggingface.co/spaces/poscye/ddg-web-search-chat/resolve/main/logo.jpg" alt="Logo" style="width: 100%; height: 100%; border-radius: 8px;">
    </figure>
    <div style="padding: .5rem 1.5rem;">
        <h2 style="text-align: left; font-size: 1.5rem; font-weight: 700; margin-bottom: 0.5rem;">llama-cpp-agent</h2>
        <p style="text-align: left; font-size: 16px; line-height: 1.5; margin-bottom: 15px;">DDG Agent allows users to interact with it using natural language, making it easier for them to find the information they need. Offers a convenient and secure way for users to access web-based information.</p>
        <div style="display: flex; justify-content: space-between; align-items: center;">
            <div style="display: flex; flex-flow: column; justify-content: space-between;">
                <span style="display: inline-flex; align-items: center; border-radius: 0.375rem; background-color: rgba(229, 70, 77, 0.1); padding: 0.1rem 0.75rem; font-size: 0.75rem; font-weight: 500; color: #f88181; margin-bottom: 2.5px;">
                    Mistral 7B Instruct v0.3
                </span>
                <span style="display: inline-flex; align-items: center; border-radius: 0.375rem; background-color: rgba(79, 70, 229, 0.1); padding: 0.1rem 0.75rem; font-size: 0.75rem; font-weight: 500; color: #60a5fa; margin-top: 2.5px;">
                    Meta Llama 3 8B Instruct
                </span>
            </div>
            <div style="display: flex; justify-content: flex-end; align-items: center;">
                <a href="https://discord.gg/sRMvWKrh" target="_blank" rel="noreferrer" style="padding: .5rem;">
                    <svg width="24" height="24" fill="currentColor" xmlns="http://www.w3.org/2000/svg" viewBox="0 5 30.67 23.25">
                        <title>Discord</title>
                        <path d="M26.0015 6.9529C24.0021 6.03845 21.8787 5.37198 19.6623 5C19.3833 5.48048 19.0733 6.13144 18.8563 6.64292C16.4989 6.30193 14.1585 6.30193 11.8336 6.64292C11.6166 6.13144 11.2911 5.48048 11.0276 5C8.79575 5.37198 6.67235 6.03845 4.6869 6.9529C0.672601 12.8736 -0.41235 18.6548 0.130124 24.3585C2.79599 26.2959 5.36889 27.4739 7.89682 28.2489C8.51679 27.4119 9.07477 26.5129 9.55525 25.5675C8.64079 25.2265 7.77283 24.808 6.93587 24.312C7.15286 24.1571 7.36986 23.9866 7.57135 23.8161C12.6241 26.1255 18.0969 26.1255 23.0876 23.8161C23.3046 23.9866 23.5061 24.1571 23.7231 24.312C22.8861 24.808 22.0182 25.2265 21.1037 25.5675C21.5842 26.5129 22.1422 27.4119 22.7621 28.2489C25.2885 27.4739 27.8769 26.2959 30.5288 24.3585C31.1952 17.7559 29.4733 12.0212 26.0015 6.9529ZM10.2527 20.8402C8.73376 20.8402 7.49382 19.4608 7.49382 17.7714C7.49382 16.082 8.70276 14.7025 10.2527 14.7025C11.7871 14.7025 13.0425 16.082 13.0115 17.7714C13.0115 19.4608 11.7871 20.8402 10.2527 20.8402ZM20.4373 20.8402C18.9183 20.8402 17.6768 19.4608 17.6768 17.7714C17.6768 16.082 18.8873 14.7025 20.4373 14.7025C21.9717 14.7025 23.2271 16.082 23.1961 17.7714C23.1961 19.4608 21.9872 20.8402 20.4373 20.8402Z"></path>
                    </svg>
                </a>
                <a href="https://github.com/Maximilian-Winter/llama-cpp-agent" target="_blank" rel="noreferrer" style="padding: .5rem;">
                    <svg width="24" height="24" fill="currentColor" viewBox="3 3 18 18">
                        <title>GitHub</title>
                        <path d="M12 3C7.0275 3 3 7.12937 3 12.2276C3 16.3109 5.57625 19.7597 9.15374 20.9824C9.60374 21.0631 9.77249 20.7863 9.77249 20.5441C9.77249 20.3249 9.76125 19.5982 9.76125 18.8254C7.5 19.2522 6.915 18.2602 6.735 17.7412C6.63375 17.4759 6.19499 16.6569 5.8125 16.4378C5.4975 16.2647 5.0475 15.838 5.80124 15.8264C6.51 15.8149 7.01625 16.4954 7.18499 16.7723C7.99499 18.1679 9.28875 17.7758 9.80625 17.5335C9.885 16.9337 10.1212 16.53 10.38 16.2993C8.3775 16.0687 6.285 15.2728 6.285 11.7432C6.285 10.7397 6.63375 9.9092 7.20749 9.26326C7.1175 9.03257 6.8025 8.08674 7.2975 6.81794C7.2975 6.81794 8.05125 6.57571 9.77249 7.76377C10.4925 7.55615 11.2575 7.45234 12.0225 7.45234C12.7875 7.45234 13.5525 7.55615 14.2725 7.76377C15.9937 6.56418 16.7475 6.81794 16.7475 6.81794C17.2424 8.08674 16.9275 9.03257 16.8375 9.26326C17.4113 9.9092 17.76 10.7281 17.76 11.7432C17.76 15.2843 15.6563 16.0687 13.6537 16.2993C13.98 16.5877 14.2613 17.1414 14.2613 18.0065C14.2613 19.2407 14.25 20.2326 14.25 20.5441C14.25 20.7863 14.4188 21.0746 14.8688 20.9824C16.6554 20.364 18.2079 19.1866 19.3078 17.6162C20.4077 16.0457 20.9995 14.1611 21 12.2276C21 7.12937 16.9725 3 12 3Z"></path>
                    </svg>
                </a>
            </div>
        </div>
    </div>
</div>
"""

def get_context_by_model(model_name):
    model_context_limits = {
        "Mistral-7B-Instruct-v0.3-Q6_K.gguf": 32768,
        "mixtral-8x7b-instruct-v0.1.Q5_K_M.gguf": 32768,
        "Meta-Llama-3-8B-Instruct-Q6_K.gguf": 8192
    }
    return model_context_limits.get(model_name, None)

def get_messages_formatter_type(model_name):
    model_name = model_name.lower()
    if any(keyword in model_name for keyword in ["meta", "aya"]):
        return MessagesFormatterType.LLAMA_3
    elif any(keyword in model_name for keyword in ["mistral", "mixtral"]):
        return MessagesFormatterType.MISTRAL
    elif any(keyword in model_name for keyword in ["einstein", "dolphin"]):
        return MessagesFormatterType.CHATML
    elif "phi" in model_name:
        return MessagesFormatterType.PHI_3
    else:
        return MessagesFormatterType.CHATML


def write_message_to_user():
    """
    Let you write a message to the user.
    """
    return "Please write the message to the user."


@spaces.GPU(duration=120)
def respond(
    message,
    history: list[tuple[str, str]],
    model,
    system_message,
    max_tokens,
    temperature,
    top_p,
    top_k,
    repeat_penalty,
):
    chat_template = get_messages_formatter_type(model)
    llm = Llama(
        model_path=f"models/{model}",
        flash_attn=True,
        n_gpu_layers=81,
        n_batch=1024,
        n_ctx=get_context_by_model(model),
    )
    provider = LlamaCppPythonProvider(llm)
    logging.info(f"Loaded chat examples: {chat_template}")
    search_tool = WebSearchTool(
        llm_provider=provider,
        message_formatter_type=chat_template,
        max_tokens_search_results=12000,
        max_tokens_per_summary=2048,
    )

    web_search_agent = LlamaCppAgent(
        provider,
        system_prompt=web_search_system_prompt,
        predefined_messages_formatter_type=chat_template,
        debug_output=True,
    )

    answer_agent = LlamaCppAgent(
        provider,
        system_prompt=research_system_prompt,
        predefined_messages_formatter_type=chat_template,
        debug_output=True,
    )

    settings = provider.get_provider_default_settings()
    settings.stream = False
    settings.temperature = temperature
    settings.top_k = top_k
    settings.top_p = top_p

    settings.max_tokens = max_tokens
    settings.repeat_penalty = repeat_penalty

    output_settings = LlmStructuredOutputSettings.from_functions(
        [search_tool.get_tool()]
    )

    messages = BasicChatHistory()

    for msn in history:
        user = {"role": Roles.user, "content": msn[0]}
        assistant = {"role": Roles.assistant, "content": msn[1]}
        messages.add_message(user)
        messages.add_message(assistant)

    result = web_search_agent.get_chat_response(
        message,
        llm_sampling_settings=settings,
        structured_output_settings=output_settings,
        add_message_to_chat_history=False,
        add_response_to_chat_history=False,
        print_output=False,
    )

    outputs = ""

    settings.stream = True
    response_text = answer_agent.get_chat_response(
        f"Write a detailed and complete research document that fulfills the following user request: '{message}', based on the information from the web below.\n\n" +
        result[0]["return_value"],
        role=Roles.tool,
        llm_sampling_settings=settings,
        chat_history=messages,
        returns_streaming_generator=True,
        print_output=False,
    )

    for text in response_text:
        outputs += text
        yield outputs

    output_settings = LlmStructuredOutputSettings.from_pydantic_models(
        [CitingSources], LlmStructuredOutputType.object_instance
    )

    citing_sources = answer_agent.get_chat_response(
        "Cite the sources you used in your response.",
        role=Roles.tool,
        llm_sampling_settings=settings,
        chat_history=messages,
        returns_streaming_generator=False,
        structured_output_settings=output_settings,
        print_output=False,
    )
    outputs += "\n\nSources:\n"
    outputs += "\n".join(citing_sources.sources)
    yield outputs


demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Dropdown([
            'Mistral-7B-Instruct-v0.3-Q6_K.gguf',
            'mixtral-8x7b-instruct-v0.1.Q5_K_M.gguf',
            'Meta-Llama-3-8B-Instruct-Q6_K.gguf'
        ],
            value="Mistral-7B-Instruct-v0.3-Q6_K.gguf",
            label="Model"
        ),
        gr.Textbox(value=web_search_system_prompt, label="System message"),
        gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.45, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p",
        ),
        gr.Slider(
            minimum=0,
            maximum=100,
            value=40,
            step=1,
            label="Top-k",
        ),
        gr.Slider(
            minimum=0.0,
            maximum=2.0,
            value=1.1,
            step=0.1,
            label="Repetition penalty",
        ),
    ],
    theme=gr.themes.Soft(
        primary_hue="orange",
        secondary_hue="amber",
        neutral_hue="gray",
        font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
            body_background_fill_dark="#0c0505",
            block_background_fill_dark="#0c0505",
            block_border_width="1px",
            block_title_background_fill_dark="#1b0f0f",
            input_background_fill_dark="#140b0b",
            button_secondary_background_fill_dark="#140b0b",
            border_color_accent_dark="#1b0f0f",
            border_color_primary_dark="#1b0f0f",
            background_fill_secondary_dark="#0c0505",
            color_accent_soft_dark="transparent",
            code_background_fill_dark="#140b0b"
        ),
        css=css,
        retry_btn="Retry",
        undo_btn="Undo",
        clear_btn="Clear",
        submit_btn="Send",
        examples = (examples),
        description="Llama-cpp-agent: Chat Web Search DDG Agent",
        analytics_enabled=False,
        chatbot=gr.Chatbot(
            scale=1,
            placeholder=PLACEHOLDER,
            show_copy_button=True
        )
    )

if __name__ == "__main__":
    demo.launch()