Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,631 Bytes
d9528c3 7772d47 d9528c3 7772d47 d9528c3 7772d47 d9528c3 7772d47 d9528c3 a5c8a93 d9528c3 7772d47 d9528c3 7772d47 d9528c3 7772d47 d9528c3 7772d47 d9528c3 7772d47 d9528c3 7772d47 d9528c3 7772d47 d9528c3 7772d47 d9528c3 7772d47 d9528c3 7772d47 d9528c3 7772d47 d9528c3 7772d47 a5c8a93 d9528c3 a5c8a93 d9528c3 7772d47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import spaces
import json
import subprocess
import gradio as gr
from huggingface_hub import hf_hub_download
from duckduckgo_search import DDGS
from trafilatura import fetch_url, extract
subprocess.run(
'pip install llama-cpp-python==0.2.75 --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu124',
shell=True)
subprocess.run('pip install llama-cpp-agent==0.2.10', shell=True)
hf_hub_download(
repo_id="bartowski/Meta-Llama-3-70B-Instruct-GGUF",
filename="Meta-Llama-3-70B-Instruct-Q3_K_M.gguf",
local_dir="./models"
)
hf_hub_download(
repo_id="bartowski/Llama-3-8B-Synthia-v3.5-GGUF",
filename="Llama-3-8B-Synthia-v3.5-f16.gguf",
local_dir="./models"
)
hf_hub_download(
repo_id="bartowski/Mistral-7B-Instruct-v0.3-GGUF",
filename="Mistral-7B-Instruct-v0.3-f32.gguf",
local_dir="./models"
)
css = """
.message-row {
justify-content: space-evenly !important;
}
.message-bubble-border {
border-radius: 6px !important;
}
.dark.message-bubble-border {
border-color: #343140 !important;
}
.dark.user {
background: #1e1c26 !important;
}
.dark.assistant.dark, .dark.pending.dark {
background: #111111 !important;
}
"""
def get_website_content_from_url(url: str) -> str:
"""
Get website content from a URL using Selenium and BeautifulSoup for improved content extraction and filtering.
Args:
url (str): URL to get website content from.
Returns:
str: Extracted content including title, main text, and tables.
"""
try:
downloaded = fetch_url(url)
result = extract(downloaded, include_formatting=True, include_links=True, output_format='json', url=url)
if result:
result = json.loads(result)
return f'=========== Website Title: {result["title"]} ===========\n\n=========== Website URL: {url} ===========\n\n=========== Website Content ===========\n\n{result["raw_text"]}\n\n=========== Website Content End ===========\n\n'
else:
return ""
except Exception as e:
return f"An error occurred: {str(e)}"
def search_web(search_query: str):
"""
Search the web for information.
Args:
search_query (str): Search query to search for.
"""
results = DDGS().text(search_query, region='wt-wt', safesearch='off', timelimit='y', max_results=3)
result_string = ''
for res in results:
web_info = get_website_content_from_url(res['href'])
if web_info != "":
result_string += web_info
res = result_string.strip()
return "Based on the following results, answer the previous user query:\nResults:\n\n" + res
def get_messages_formatter_type(model_name):
from llama_cpp_agent import MessagesFormatterType
if "Llama" in model_name:
return MessagesFormatterType.LLAMA_3
elif "Mistral" in model_name:
return MessagesFormatterType.MISTRAL
else:
raise ValueError(f"Unsupported model: {model_name}")
def write_message_to_user():
"""
Let you write a message to the user.
"""
return "Please write the message to the user."
@spaces.GPU(duration=120)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
model,
):
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
from llama_cpp_agent.llm_output_settings import LlmStructuredOutputSettings
chat_template = get_messages_formatter_type(model)
llm = Llama(
model_path=f"models/{model}",
flash_attn=True,
n_threads=40,
n_gpu_layers=81,
n_batch=1024,
n_ctx=8192,
)
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=chat_template,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
output_settings = LlmStructuredOutputSettings.from_functions(
[search_web, write_message_to_user])
messages = BasicChatHistory()
for msn in history:
user = {
'role': Roles.user,
'content': msn[0]
}
assistant = {
'role': Roles.assistant,
'content': msn[1]
}
messages.add_message(user)
messages.add_message(assistant)
result = agent.get_chat_response(message, llm_sampling_settings=settings, structured_output_settings=output_settings,
chat_history=messages,
print_output=False)
while True:
if result[0]["function"] == "write_message_to_user":
break
else:
result = agent.get_chat_response(result[0]["return_value"], role=Roles.tool, chat_history=messages,structured_output_settings=output_settings,
print_output=False)
stream = agent.get_chat_response(
result[0]["return_value"], role=Roles.tool, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True,
print_output=False
)
outputs = ""
for output in stream:
outputs += output
yield outputs
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a helpful assistant.", label="System message"),
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
),
gr.Slider(
minimum=0,
maximum=100,
value=40,
step=1,
label="Top-k",
),
gr.Slider(
minimum=0.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition penalty",
),
gr.Dropdown([
'Meta-Llama-3-70B-Instruct-Q3_K_M.gguf',
'Llama-3-8B-Synthia-v3.5-f16.gguf',
'Mistral-7B-Instruct-v0.3-f32.gguf'
],
value="Meta-Llama-3-70B-Instruct-Q3_K_M.gguf",
label="Model"
),
],
theme=gr.themes.Soft(primary_hue="violet", secondary_hue="violet", neutral_hue="gray",
font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
body_background_fill_dark="#111111",
block_background_fill_dark="#111111",
block_border_width="1px",
block_title_background_fill_dark="#1e1c26",
input_background_fill_dark="#292733",
button_secondary_background_fill_dark="#24212b",
border_color_primary_dark="#343140",
background_fill_secondary_dark="#111111",
color_accent_soft_dark="transparent"
),
css=css,
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
submit_btn="Send",
description="Llama-cpp-agent: Chat multi llm selection"
)
if __name__ == "__main__":
demo.launch()
|