import gradio as gr import sys sys.path.append('../src/') from utils.helpers import OCRD def run_ocrd_pipeline(img_path, status=gr.Progress(), binarize_mode='detailed', min_pixel_sum=30, median_bounds=(None, None), font_size=30): """ Executes the OCRD pipeline on an image from file loading to text overlay creation. This function orchestrates the calling of various OCRD class methods to process the image, extract and recognize text, and then overlay this text on the original image. Parameters: img_path (str): Path to the image file. binarize_mode (str): Mode to be used for image binarization. Can be 'detailed', 'fast', or 'no'. min_pixel_sum (int, optional): Minimum sum of pixels to consider a text line segmentation for extraction. If 'default', default values are applied. median_bounds (tuple, optional): Bounds to filter text line segmentations based on size relative to the median. If 'default', default values are applied. font_size (int, optional): Font size to be used in text overlay. If 'default', a default size or scaling logic is applied. Returns: Image: An image with overlay text, where text is extracted and recognized from the original image. This function handles: - Image binarization. - Text line segmentation. - Text line extraction and deskewing. - Optical character recognition on text lines. - Creating an image overlay with recognized text. """ # prepare kwargs efadt_kwargs = {} if min_pixel_sum != 'default': efadt_kwargs['min_pixel_sum'] = min_pixel_sum if median_bounds != 'default': efadt_kwargs['median_bounds'] = median_bounds ctoi_kwargs = {} if font_size != 'default': ctoi_kwargs['font_size'] = font_size # run pipeline #status(0, desc="\nReading image...\n") ocrd = OCRD(img_path) status(0, desc='\nStep 1/5: Binarizing image...\n') binarized = ocrd.binarize_image(ocrd.image, binarize_mode) status(0, desc='\nStep 2/5: Segmenting textlines...\n') textline_segments = ocrd.segment_textlines(binarized) status(0, desc='\nStep 3/5: Extracting, filtering and de-skewing textlines...\n') image_scaled = ocrd.scale_image(ocrd.image) # textline_segments were predicted on rescaled image textline_images, _ = ocrd.extract_filter_and_deskew_textlines(image_scaled, textline_segments[...,0], **efadt_kwargs) status(0, desc='\nStep 4/5: OCR on textlines...\n') textline_preds = ocrd.ocr_on_textlines(textline_images) status(0, desc='\nStep 5/5: Creating output overlay image...') img_gen = ocrd.create_text_overlay_image(textline_images, textline_preds, (image_scaled.shape[0], image_scaled.shape[1]), **ctoi_kwargs) status(1, desc='\nJOB COMPLETED\n') return img_gen demo_data = [ '../src/demo_data/act_image.jpg', '../src/demo_data/newjersey1_image.jpg', '../src/demo_data/newjersey2_image.jpg', '../src/demo_data/notes_image.jpg', '../src/demo_data/washington_image.jpg' ] iface = gr.Interface(run_ocrd_pipeline, title="OCRD Pipeline", description="", inputs=[gr.Image(type='filepath', label='Input image')], outputs=gr.Image(label='Output image: overlay with recognized text', type='pil', format='jpeg'), examples=demo_data) iface.launch()