Upload helpers.py
Browse files- helpers.py +595 -0
helpers.py
ADDED
|
@@ -0,0 +1,595 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
import json
|
| 4 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 5 |
+
from transformers import pipeline
|
| 6 |
+
from huggingface_hub import from_pretrained_keras
|
| 7 |
+
import imageio
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def resize_image(img_in,input_height,input_width):
|
| 11 |
+
return cv2.resize( img_in, ( input_width,input_height) ,interpolation=cv2.INTER_NEAREST)
|
| 12 |
+
|
| 13 |
+
def write_dict_to_json(dictionary, save_path, indent=4):
|
| 14 |
+
with open(save_path, "w") as outfile:
|
| 15 |
+
json.dump(dictionary, outfile, indent=indent)
|
| 16 |
+
|
| 17 |
+
def load_json_to_dict(load_path):
|
| 18 |
+
with open(load_path) as json_file:
|
| 19 |
+
return json.load(json_file)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class OCRD:
|
| 23 |
+
"""
|
| 24 |
+
Optical Character Recognition and Document processing class that provides functionalities
|
| 25 |
+
to preprocess images, detect text lines, perform OCR, and visualize the results.
|
| 26 |
+
|
| 27 |
+
The class utilizes deep learning models for various tasks such as binarization and text
|
| 28 |
+
line segmentation. It provides comprehensive methods to handle image scaling, prediction,
|
| 29 |
+
text extraction, and overlaying recognized text on images.
|
| 30 |
+
|
| 31 |
+
Attributes:
|
| 32 |
+
image (ndarray): The image loaded into memory from the specified path. This image
|
| 33 |
+
is used across various methods within the class.
|
| 34 |
+
|
| 35 |
+
Methods:
|
| 36 |
+
__init__(img_path: str):
|
| 37 |
+
Initializes the OCRD class by loading an image from the specified file path.
|
| 38 |
+
|
| 39 |
+
scale_image(img: ndarray) -> ndarray:
|
| 40 |
+
Scales an image while maintaining its aspect ratio based on predefined width thresholds.
|
| 41 |
+
|
| 42 |
+
predict(model, img: ndarray) -> ndarray:
|
| 43 |
+
Uses a specified model to make predictions on the image. This function handles
|
| 44 |
+
image resizing and segmenting for model input.
|
| 45 |
+
|
| 46 |
+
binarize_image(img: ndarray, binarize_mode: str) -> ndarray:
|
| 47 |
+
Applies binarization to the image based on the specified mode ('detailed', 'fast', or 'no').
|
| 48 |
+
|
| 49 |
+
segment_textlines(img: ndarray) -> ndarray:
|
| 50 |
+
Segments text lines from the binarized image using a pretrained model.
|
| 51 |
+
|
| 52 |
+
extract_filter_and_deskew_textlines(img: ndarray, textline_mask: ndarray, min_pixel_sum: int, median_bounds: tuple) -> (dict, ndarray):
|
| 53 |
+
Processes an image to extract and correct orientation of text lines based on the provided mask.
|
| 54 |
+
|
| 55 |
+
ocr_on_textlines(textline_images: dict) -> dict:
|
| 56 |
+
Performs OCR on the extracted text lines and returns the recognized text.
|
| 57 |
+
|
| 58 |
+
create_text_overlay_image(textline_images: dict, textline_preds: dict, img_shape: tuple, font_size: int) -> Image:
|
| 59 |
+
Creates an image overlay with the recognized text annotations.
|
| 60 |
+
|
| 61 |
+
visualize_model_output(prediction: ndarray, img: ndarray) -> ndarray:
|
| 62 |
+
Visualizes the model's prediction by overlaying it onto the original image with distinct colors.
|
| 63 |
+
"""
|
| 64 |
+
|
| 65 |
+
def __init__(self, img_path):
|
| 66 |
+
self.image = np.array(Image.open(img_path))
|
| 67 |
+
|
| 68 |
+
def scale_image(self, img):
|
| 69 |
+
"""
|
| 70 |
+
Scales an image to have dimensions suitable for neural network inference. Scaling is based on the
|
| 71 |
+
input width parameter. The new width and height of the image are calculated to maintain the aspect
|
| 72 |
+
ratio of the original image.
|
| 73 |
+
|
| 74 |
+
Parameters:
|
| 75 |
+
- img (ndarray): The image to be scaled, expected to be in the form of a numpy array where
|
| 76 |
+
img.shape[0] is the height and img.shape[1] is the width.
|
| 77 |
+
|
| 78 |
+
Behavior:
|
| 79 |
+
- If image width is less than 1100, the new width is set to 2000 pixels. The height is adjusted
|
| 80 |
+
to maintain the aspect ratio.
|
| 81 |
+
- If image width is between 1100 (inclusive) and 2500 (exclusive), the width remains unchanged
|
| 82 |
+
and the height is adjusted to maintain the aspect ratio.
|
| 83 |
+
- If image width is 2500 or more, the width is set to 2000 pixels and the height is similarly
|
| 84 |
+
adjusted to maintain the aspect ratio.
|
| 85 |
+
|
| 86 |
+
Returns:
|
| 87 |
+
- img_new (ndarray): A new image array that has been resized according to the specified rules.
|
| 88 |
+
The aspect ratio of the original image is preserved.
|
| 89 |
+
|
| 90 |
+
Note:
|
| 91 |
+
- This function assumes that a function `resize_image(img, height, width)` is available and is
|
| 92 |
+
used to resize the image where `img` is the original image array, `height` is the new height,
|
| 93 |
+
and `width` is the new width.
|
| 94 |
+
"""
|
| 95 |
+
|
| 96 |
+
width_early = img.shape[1]
|
| 97 |
+
|
| 98 |
+
if width_early < 1100:
|
| 99 |
+
img_w_new = 2000
|
| 100 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * 2000)
|
| 101 |
+
elif width_early >= 1100 and width_early < 2500:
|
| 102 |
+
img_w_new = width_early
|
| 103 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * width_early)
|
| 104 |
+
else:
|
| 105 |
+
img_w_new = 2000
|
| 106 |
+
img_h_new = int(img.shape[0] / float(img.shape[1]) * 2000)
|
| 107 |
+
|
| 108 |
+
img_new = resize_image(img, img_h_new, img_w_new)
|
| 109 |
+
|
| 110 |
+
return img_new
|
| 111 |
+
|
| 112 |
+
def predict(self, model, img):
|
| 113 |
+
"""
|
| 114 |
+
Processes an image to predict segmentation outputs using a given model. The function handles image resizing
|
| 115 |
+
to match the model's input dimensions and ensures that the entire image is processed by segmenting it into patches
|
| 116 |
+
that the model can handle. The prediction from these patches is then reassembled into a single output image.
|
| 117 |
+
|
| 118 |
+
Parameters:
|
| 119 |
+
- model (keras.Model): The neural network model used for predicting the image segmentation. The model should have
|
| 120 |
+
predefined input dimensions (height and width).
|
| 121 |
+
- img (ndarray): The image to be processed, represented as a numpy array.
|
| 122 |
+
|
| 123 |
+
Returns:
|
| 124 |
+
- prediction_true (ndarray): An image of the same size as the input image, containing the segmentation prediction
|
| 125 |
+
with each pixel labeled according to the model's output.
|
| 126 |
+
|
| 127 |
+
Details:
|
| 128 |
+
- The function first scales the input image according to the model's required input dimensions. If the scaled image
|
| 129 |
+
is smaller than the model's height or width, it is resized to match exactly.
|
| 130 |
+
- The function processes the image in overlapping patches to ensure smooth transitions between the segments. These
|
| 131 |
+
patches are then processed individually through the model.
|
| 132 |
+
- Predictions from these patches are then stitched together to form a complete output image, ensuring that edge
|
| 133 |
+
artifacts are minimized by carefully blending the overlapping areas.
|
| 134 |
+
- This method assumes the availability of `resize_image` function for scaling and resizing
|
| 135 |
+
operations, respectively.
|
| 136 |
+
- The output is converted to an 8-bit image before returning, suitable for display or further processing.
|
| 137 |
+
"""
|
| 138 |
+
|
| 139 |
+
# bitmap output
|
| 140 |
+
img_height_model=model.layers[len(model.layers)-1].output_shape[1]
|
| 141 |
+
img_width_model=model.layers[len(model.layers)-1].output_shape[2]
|
| 142 |
+
|
| 143 |
+
img = self.scale_image(img)
|
| 144 |
+
|
| 145 |
+
if img.shape[0] < img_height_model:
|
| 146 |
+
img = resize_image(img, img_height_model, img.shape[1])
|
| 147 |
+
|
| 148 |
+
if img.shape[1] < img_width_model:
|
| 149 |
+
img = resize_image(img, img.shape[0], img_width_model)
|
| 150 |
+
|
| 151 |
+
marginal_of_patch_percent = 0.1
|
| 152 |
+
margin = int(marginal_of_patch_percent * img_height_model)
|
| 153 |
+
width_mid = img_width_model - 2 * margin
|
| 154 |
+
height_mid = img_height_model - 2 * margin
|
| 155 |
+
img = img / float(255.0)
|
| 156 |
+
img = img.astype(np.float16)
|
| 157 |
+
img_h = img.shape[0]
|
| 158 |
+
img_w = img.shape[1]
|
| 159 |
+
prediction_true = np.zeros((img_h, img_w, 3))
|
| 160 |
+
nxf = img_w / float(width_mid)
|
| 161 |
+
nyf = img_h / float(height_mid)
|
| 162 |
+
nxf = int(nxf) + 1 if nxf > int(nxf) else int(nxf)
|
| 163 |
+
nyf = int(nyf) + 1 if nyf > int(nyf) else int(nyf)
|
| 164 |
+
|
| 165 |
+
for i in range(nxf):
|
| 166 |
+
for j in range(nyf):
|
| 167 |
+
if i == 0:
|
| 168 |
+
index_x_d = i * width_mid
|
| 169 |
+
index_x_u = index_x_d + img_width_model
|
| 170 |
+
else:
|
| 171 |
+
index_x_d = i * width_mid
|
| 172 |
+
index_x_u = index_x_d + img_width_model
|
| 173 |
+
if j == 0:
|
| 174 |
+
index_y_d = j * height_mid
|
| 175 |
+
index_y_u = index_y_d + img_height_model
|
| 176 |
+
else:
|
| 177 |
+
index_y_d = j * height_mid
|
| 178 |
+
index_y_u = index_y_d + img_height_model
|
| 179 |
+
if index_x_u > img_w:
|
| 180 |
+
index_x_u = img_w
|
| 181 |
+
index_x_d = img_w - img_width_model
|
| 182 |
+
if index_y_u > img_h:
|
| 183 |
+
index_y_u = img_h
|
| 184 |
+
index_y_d = img_h - img_height_model
|
| 185 |
+
|
| 186 |
+
img_patch = img[index_y_d:index_y_u, index_x_d:index_x_u, :]
|
| 187 |
+
label_p_pred = model.predict(img_patch.reshape(1, img_patch.shape[0], img_patch.shape[1], img_patch.shape[2]),
|
| 188 |
+
verbose=0)
|
| 189 |
+
|
| 190 |
+
seg = np.argmax(label_p_pred, axis=3)[0]
|
| 191 |
+
seg_color = np.repeat(seg[:, :, np.newaxis], 3, axis=2)
|
| 192 |
+
|
| 193 |
+
if i == 0 and j == 0:
|
| 194 |
+
seg_color = seg_color[0 : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
|
| 195 |
+
prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color
|
| 196 |
+
elif i == nxf - 1 and j == nyf - 1:
|
| 197 |
+
seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - 0, :]
|
| 198 |
+
prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - 0, :] = seg_color
|
| 199 |
+
elif i == 0 and j == nyf - 1:
|
| 200 |
+
seg_color = seg_color[margin : seg_color.shape[0] - 0, 0 : seg_color.shape[1] - margin, :]
|
| 201 |
+
prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + 0 : index_x_u - margin, :] = seg_color
|
| 202 |
+
elif i == nxf - 1 and j == 0:
|
| 203 |
+
seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
|
| 204 |
+
prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color
|
| 205 |
+
elif i == 0 and j != 0 and j != nyf - 1:
|
| 206 |
+
seg_color = seg_color[margin : seg_color.shape[0] - margin, 0 : seg_color.shape[1] - margin, :]
|
| 207 |
+
prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + 0 : index_x_u - margin, :] = seg_color
|
| 208 |
+
elif i == nxf - 1 and j != 0 and j != nyf - 1:
|
| 209 |
+
seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - 0, :]
|
| 210 |
+
prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - 0, :] = seg_color
|
| 211 |
+
elif i != 0 and i != nxf - 1 and j == 0:
|
| 212 |
+
seg_color = seg_color[0 : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
|
| 213 |
+
prediction_true[index_y_d + 0 : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color
|
| 214 |
+
elif i != 0 and i != nxf - 1 and j == nyf - 1:
|
| 215 |
+
seg_color = seg_color[margin : seg_color.shape[0] - 0, margin : seg_color.shape[1] - margin, :]
|
| 216 |
+
prediction_true[index_y_d + margin : index_y_u - 0, index_x_d + margin : index_x_u - margin, :] = seg_color
|
| 217 |
+
else:
|
| 218 |
+
seg_color = seg_color[margin : seg_color.shape[0] - margin, margin : seg_color.shape[1] - margin, :]
|
| 219 |
+
prediction_true[index_y_d + margin : index_y_u - margin, index_x_d + margin : index_x_u - margin, :] = seg_color
|
| 220 |
+
|
| 221 |
+
prediction_true = prediction_true.astype(np.uint8)
|
| 222 |
+
|
| 223 |
+
return prediction_true
|
| 224 |
+
|
| 225 |
+
def binarize_image(self, img, binarize_mode='detailed'):
|
| 226 |
+
"""
|
| 227 |
+
Binarizes an image according to the specified mode.
|
| 228 |
+
|
| 229 |
+
Parameters:
|
| 230 |
+
- img (ndarray): The input image to be binarized.
|
| 231 |
+
- binarize_mode (str): The mode of binarization. Can be 'detailed', 'fast', or 'no'.
|
| 232 |
+
- 'detailed': Uses a pre-trained deep learning model for binarization.
|
| 233 |
+
- 'fast': Uses OpenCV for a quicker, threshold-based binarization.
|
| 234 |
+
- 'no': Returns a copy of the original image.
|
| 235 |
+
|
| 236 |
+
Returns:
|
| 237 |
+
- ndarray: The binarized image.
|
| 238 |
+
|
| 239 |
+
Raises:
|
| 240 |
+
- ValueError: If an invalid binarize_mode is provided.
|
| 241 |
+
|
| 242 |
+
Description:
|
| 243 |
+
Depending on the 'binarize_mode', the function processes the image differently:
|
| 244 |
+
- For 'detailed' mode, it loads a specific model and performs prediction to binarize the image.
|
| 245 |
+
- For 'fast' mode, it quickly converts the image to grayscale and applies a threshold.
|
| 246 |
+
- For 'no' mode, it simply returns the original image unchanged.
|
| 247 |
+
If an unsupported mode is provided, the function raises a ValueError.
|
| 248 |
+
|
| 249 |
+
Note:
|
| 250 |
+
- The 'detailed' mode requires a pre-trained model from huggingface_hub.
|
| 251 |
+
- This function depends on OpenCV (cv2) for image processing in 'fast' mode.
|
| 252 |
+
"""
|
| 253 |
+
|
| 254 |
+
if binarize_mode == 'detailed':
|
| 255 |
+
model_name = "SBB/eynollah-binarization"
|
| 256 |
+
model = from_pretrained_keras(model_name)
|
| 257 |
+
binarized = self.predict(model, img)
|
| 258 |
+
|
| 259 |
+
# Convert from mask to image (letters black)
|
| 260 |
+
binarized = binarized.astype(np.int8)
|
| 261 |
+
binarized = -binarized + 1
|
| 262 |
+
binarized = (binarized * 255).astype(np.uint8)
|
| 263 |
+
|
| 264 |
+
elif binarize_mode == 'fast':
|
| 265 |
+
binarized = self.scale_image(img, self.image)
|
| 266 |
+
binarized = cv2.cvtColor(binarized, cv2.COLOR_BGR2GRAY)
|
| 267 |
+
_, binarized = cv2.threshold(binarized, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
|
| 268 |
+
binarized = np.repeat(binarized[:, :, np.newaxis], 3, axis=2)
|
| 269 |
+
|
| 270 |
+
elif binarize_mode == 'no':
|
| 271 |
+
binarized = img.copy()
|
| 272 |
+
|
| 273 |
+
else:
|
| 274 |
+
accepted_values = ['detailed', 'fast', 'no']
|
| 275 |
+
raise ValueError(f"Invalid value provided: {binarize_mode}. Accepted values are: {accepted_values}")
|
| 276 |
+
|
| 277 |
+
binarized = binarized.astype(np.uint8)
|
| 278 |
+
|
| 279 |
+
return binarized
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
def segment_textlines(self, img):
|
| 283 |
+
'''
|
| 284 |
+
ADD DOCUMENTATION!
|
| 285 |
+
'''
|
| 286 |
+
model_name = "SBB/eynollah-textline"
|
| 287 |
+
model = from_pretrained_keras(model_name)
|
| 288 |
+
textline_segments = self.predict(model, img)
|
| 289 |
+
|
| 290 |
+
return textline_segments
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
def extract_filter_and_deskew_textlines(self, img, textline_mask, min_pixel_sum=20, median_bounds=(.5, 20)):
|
| 294 |
+
|
| 295 |
+
"""
|
| 296 |
+
Extracts and deskews text lines from an image based on a provided textline mask. This function identifies
|
| 297 |
+
text lines, filters out those that do not meet size criteria, calculates their minimum area rectangles,
|
| 298 |
+
performs perspective transformations to deskew each text line, and handles potential rotations to ensure
|
| 299 |
+
text lines are presented horizontally.
|
| 300 |
+
|
| 301 |
+
Parameters:
|
| 302 |
+
- img (numpy.ndarray): The original image from which to extract and deskew text lines. It should be a 3D array.
|
| 303 |
+
- textline_mask (numpy.ndarray): A binary mask where text lines have been segmented. It should be a 2D array.
|
| 304 |
+
- min_pixel_sum (int, optional): The minimum number of pixels (area) a connected component must have to be considered
|
| 305 |
+
a valid text line. If None, no filtering is applied.
|
| 306 |
+
- median_bounds (tuple, optional): A tuple representing the lower and upper bounds as multipliers for filtering
|
| 307 |
+
text lines based on the median size of identified text lines. If None, no filtering is applied.
|
| 308 |
+
|
| 309 |
+
Returns:
|
| 310 |
+
- tuple:
|
| 311 |
+
- dict: A dictionary containing lists of the extracted and deskewed text line images along with their
|
| 312 |
+
metadata (center, left side, height, width, and rotation angle of the bounding box).
|
| 313 |
+
- numpy.ndarray: An image visualization of the filtered text line mask for debugging or analysis.
|
| 314 |
+
|
| 315 |
+
Description:
|
| 316 |
+
The function first uses connected components to identify potential text lines from the mask. It filters these
|
| 317 |
+
based on absolute size (min_pixel_sum) and relative size (median_bounds). For each valid text line, it computes
|
| 318 |
+
a minimum area rectangle, extracts and deskews the bounded region. This includes rotating the text line if it
|
| 319 |
+
is detected as vertical (taller than wide). Finally, it aggregates the results and provides an image for
|
| 320 |
+
visualization of the text lines retained after filtering.
|
| 321 |
+
|
| 322 |
+
Notes:
|
| 323 |
+
- This function assumes the textline_mask is properly segmented and binary (0s for background, 255 for text lines).
|
| 324 |
+
- Errors in perspective transformation due to incorrect contour extraction or bounding box calculations are handled
|
| 325 |
+
gracefully, reporting the error but continuing with other text lines.
|
| 326 |
+
"""
|
| 327 |
+
|
| 328 |
+
num_labels, labels_im = cv2.connectedComponents(textline_mask)
|
| 329 |
+
|
| 330 |
+
# Thresholds for filtering
|
| 331 |
+
MIN_PIXEL_SUM = min_pixel_sum # absolute filtering
|
| 332 |
+
MEDIAN_LOWER_BOUND = median_bounds[0] # relative filtering
|
| 333 |
+
MEDIAN_UPPER_BOUND = median_bounds[1] # relative filtering
|
| 334 |
+
|
| 335 |
+
# Gather masks and their sizes
|
| 336 |
+
cc_sizes = []
|
| 337 |
+
masks = []
|
| 338 |
+
labels_im_filtered = labels_im > 0 # for visualizing filtering result
|
| 339 |
+
for label in range(1, num_labels): # ignore background class
|
| 340 |
+
mask = np.where(labels_im == label, True, False)
|
| 341 |
+
if MIN_PIXEL_SUM is None:
|
| 342 |
+
is_above_min_pixel_sum = True
|
| 343 |
+
else:
|
| 344 |
+
is_above_min_pixel_sum = mask.sum() > MIN_PIXEL_SUM
|
| 345 |
+
if is_above_min_pixel_sum: # dismiss mini segmentations to avoid skewing of median
|
| 346 |
+
cc_sizes.append(mask.sum())
|
| 347 |
+
masks.append(mask)
|
| 348 |
+
|
| 349 |
+
# filter masks by size in relation to median; then calculate contours and min area bounding box for remaining ones
|
| 350 |
+
rectangles = []
|
| 351 |
+
median = np.median(cc_sizes)
|
| 352 |
+
for mask in masks:
|
| 353 |
+
mask_sum = mask.sum()
|
| 354 |
+
if MEDIAN_LOWER_BOUND is None:
|
| 355 |
+
is_above_lower_media_bound = True
|
| 356 |
+
else:
|
| 357 |
+
is_above_lower_media_bound = mask_sum > median*MEDIAN_LOWER_BOUND
|
| 358 |
+
if MEDIAN_UPPER_BOUND is None:
|
| 359 |
+
is_below_upper_median_bound = True
|
| 360 |
+
else:
|
| 361 |
+
is_below_upper_median_bound = mask_sum < median*MEDIAN_UPPER_BOUND
|
| 362 |
+
if is_above_lower_media_bound and is_below_upper_median_bound:
|
| 363 |
+
labels_im_filtered[mask > 0] = False
|
| 364 |
+
mask = (mask*255).astype(np.uint8)
|
| 365 |
+
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 366 |
+
rect = cv2.minAreaRect(contours[0])
|
| 367 |
+
if np.prod(rect[1]) > 0: # filter out if height or width = 0
|
| 368 |
+
rectangles.append(rect)
|
| 369 |
+
|
| 370 |
+
# Transform (rotated) bounding boxes to horizontal; store together with rotation angle for downstream process re-transform
|
| 371 |
+
if rectangles:
|
| 372 |
+
# Filter rectangles and de-skew images
|
| 373 |
+
textline_images = []
|
| 374 |
+
for rect in rectangles:
|
| 375 |
+
width, height = rect[1]
|
| 376 |
+
rotation_angle = rect[2] # clarify how to interpret and use rotation angle!
|
| 377 |
+
|
| 378 |
+
# Convert dimensions to integer and ensure they are > 0
|
| 379 |
+
width = int(width)
|
| 380 |
+
height = int(height)
|
| 381 |
+
|
| 382 |
+
# get source and destination points for image transform
|
| 383 |
+
box = cv2.boxPoints(rect)
|
| 384 |
+
box = np.intp(box)
|
| 385 |
+
src_pts = box.astype("float32")
|
| 386 |
+
dst_pts = np.array([[0, height-1],
|
| 387 |
+
[0, 0],
|
| 388 |
+
[width-1, 0],
|
| 389 |
+
[width-1, height-1]], dtype="float32")
|
| 390 |
+
|
| 391 |
+
try:
|
| 392 |
+
M = cv2.getPerspectiveTransform(src_pts, dst_pts)
|
| 393 |
+
warped = cv2.warpPerspective(img, M, (width, height))
|
| 394 |
+
# Check and rotate if the text line is taller than wide
|
| 395 |
+
if height > width:
|
| 396 |
+
warped = cv2.rotate(warped, cv2.ROTATE_90_CLOCKWISE)
|
| 397 |
+
temp = height
|
| 398 |
+
height = width
|
| 399 |
+
width = temp
|
| 400 |
+
rotation_angle = 90-rotation_angle
|
| 401 |
+
center = rect[0]
|
| 402 |
+
left = center[0] - width//2
|
| 403 |
+
textline_images.append((warped, center, left, height, width, rotation_angle))
|
| 404 |
+
except cv2.error as e:
|
| 405 |
+
print(f"Error with warpPerspective: {e}")
|
| 406 |
+
|
| 407 |
+
# cast to dict
|
| 408 |
+
keys = ['array', 'center', 'left', 'height', 'width', 'rotation_angle']
|
| 409 |
+
textline_images = {key: [tup[i] for tup in textline_images] for i, key in enumerate(keys)}
|
| 410 |
+
num_labels_filtered = len(textline_images['array'])
|
| 411 |
+
labels_im_filtered = np.repeat(labels_im_filtered[:, :, np.newaxis], 3, axis=2).astype(np.uint8) # 3 color channels for plotting
|
| 412 |
+
print(f'Kept {num_labels_filtered} of {num_labels} text segments after filtering.')
|
| 413 |
+
print(f'All segments deleted smaller than {MIN_PIXEL_SUM} pixels (absolute min size).')
|
| 414 |
+
if MEDIAN_LOWER_BOUND is not None:
|
| 415 |
+
print(f'All segments deleted smaller than {median*MEDIAN_LOWER_BOUND} pixels (lower median bound).')
|
| 416 |
+
if MEDIAN_UPPER_BOUND is not None:
|
| 417 |
+
print(f'All segments deleted bigger than {median*MEDIAN_UPPER_BOUND} pixels (upper median bound).')
|
| 418 |
+
if MEDIAN_LOWER_BOUND is not None or MEDIAN_UPPER_BOUND is not None:
|
| 419 |
+
print(f'Median segment size (pixel sum) used for filtering: {int(median)}.')
|
| 420 |
+
|
| 421 |
+
return textline_images, labels_im_filtered
|
| 422 |
+
|
| 423 |
+
|
| 424 |
+
def ocr_on_textlines(self, textline_images, model_name="microsoft/trocr-base-handwritten"):
|
| 425 |
+
"""
|
| 426 |
+
Processes a list of image arrays using a pre-trained OCR model to extract text.
|
| 427 |
+
|
| 428 |
+
Parameters:
|
| 429 |
+
- textline_images (dict): A dictionary with a key 'array' that contains a list of image arrays.
|
| 430 |
+
Each image array represents a line of text that will be processed by the OCR model.
|
| 431 |
+
- model_name (str): A huggingface model trained for OCR on single text lines
|
| 432 |
+
|
| 433 |
+
Returns:
|
| 434 |
+
- dict: A dictionary containing a list of extracted text under the key 'preds'.
|
| 435 |
+
|
| 436 |
+
Description:
|
| 437 |
+
The function initializes the OCR model 'microsoft/trocr-base-handwritten' using Hugging Face's
|
| 438 |
+
`pipeline` API for image-to-text conversion. Each image in the input list is converted from an
|
| 439 |
+
array format to a PIL Image, processed by the model, and the text prediction is collected.
|
| 440 |
+
The progress of image processing is printed every 10 images. The final result is a dictionary
|
| 441 |
+
with the key 'preds' that holds all text predictions as a list.
|
| 442 |
+
|
| 443 |
+
Note:
|
| 444 |
+
- This function requires the `transformers` library from Hugging Face and PIL library to run.
|
| 445 |
+
- Ensure that the model 'microsoft/trocr-base-handwritten' is correctly loaded and the
|
| 446 |
+
`transformers` library is updated to use the pipeline.
|
| 447 |
+
"""
|
| 448 |
+
|
| 449 |
+
pipe = pipeline("image-to-text", model=model_name)
|
| 450 |
+
|
| 451 |
+
# Model inference
|
| 452 |
+
textline_preds = []
|
| 453 |
+
len_array = len(textline_images['array'])
|
| 454 |
+
for i, textline in enumerate(textline_images['array'][:]):
|
| 455 |
+
if i % 10 == 1:
|
| 456 |
+
print(f'Processing textline no. {i} of {len_array}')
|
| 457 |
+
textline = Image.fromarray(textline)
|
| 458 |
+
textline_preds.append(pipe(textline))
|
| 459 |
+
|
| 460 |
+
# Convert to dict
|
| 461 |
+
preds = [pred[0]['generated_text'] for pred in textline_preds]
|
| 462 |
+
textline_preds_dict = {'preds': preds}
|
| 463 |
+
|
| 464 |
+
return textline_preds_dict
|
| 465 |
+
|
| 466 |
+
|
| 467 |
+
def adjust_font_size(self, draw, text, box_width):
|
| 468 |
+
"""
|
| 469 |
+
Adjusts the font size to ensure the text fits within a specified width.
|
| 470 |
+
|
| 471 |
+
Parameters:
|
| 472 |
+
- draw (ImageDraw.Draw): An instance of ImageDraw.Draw used to render the text.
|
| 473 |
+
- text (str): The text string to be rendered.
|
| 474 |
+
- box_width (int): The maximum width in pixels that the text should occupy.
|
| 475 |
+
|
| 476 |
+
Returns:
|
| 477 |
+
- ImageFont: A font object with a size adjusted to fit the text within the specified width.
|
| 478 |
+
"""
|
| 479 |
+
|
| 480 |
+
for font_size in range(1, 200): # Adjust the range as needed
|
| 481 |
+
font = ImageFont.load_default(font_size)
|
| 482 |
+
text_width = draw.textlength(text, font=font)
|
| 483 |
+
if text_width > box_width:
|
| 484 |
+
font_size = int(font_size - 10)
|
| 485 |
+
return ImageFont.load_default(font_size) # Return the last fitting size
|
| 486 |
+
return font # Return max size if none exceeded the box
|
| 487 |
+
|
| 488 |
+
|
| 489 |
+
def create_text_overlay_image(self, textline_images, textline_preds, img_shape, font_size=-1):
|
| 490 |
+
"""
|
| 491 |
+
Creates an image overlay with text annotations based on provided bounding box information and predictions.
|
| 492 |
+
|
| 493 |
+
Parameters:
|
| 494 |
+
- textline_images (dict): A dictionary containing the bounding box data for each text segment.
|
| 495 |
+
It should have keys 'left', 'center', 'width', and optionally 'height'. Each key should have
|
| 496 |
+
a list of values corresponding to each text segment's properties.
|
| 497 |
+
- textline_preds (dict): A dictionary containing the predicted text segments. It should have
|
| 498 |
+
a key 'preds' which holds a list of text predictions corresponding to the bounding boxes in
|
| 499 |
+
textline_images.
|
| 500 |
+
- img_shape (tuple): A tuple representing the shape of the image where the text is to be drawn.
|
| 501 |
+
The format should be (height, width).
|
| 502 |
+
- font_size (int, optional): Specifies the font size for the text. If set to -1 (default), the font size
|
| 503 |
+
is dynamically adjusted to fit the text within its bounding box width using the `adjust_font_size`
|
| 504 |
+
function. If a specific integer is provided, it uses that size for all text segments.
|
| 505 |
+
|
| 506 |
+
Returns:
|
| 507 |
+
- Image: An image object with text drawn over a blank white background.
|
| 508 |
+
|
| 509 |
+
Raises:
|
| 510 |
+
- AssertionError: If the lengths of the lists in `textline_images` and `textline_preds['preds']`
|
| 511 |
+
do not correspond, indicating a mismatch in the number of bounding boxes and text predictions.
|
| 512 |
+
"""
|
| 513 |
+
|
| 514 |
+
for key in textline_images.keys():
|
| 515 |
+
assert len(textline_images[key]) == len(textline_preds['preds']), f'Length of {key} and preds doesnt correspond'
|
| 516 |
+
|
| 517 |
+
# Create a blank white image
|
| 518 |
+
img_gen = Image.new('RGB', (img_shape[1], img_shape[0]), color=(255, 255, 255))
|
| 519 |
+
draw = ImageDraw.Draw(img_gen)
|
| 520 |
+
|
| 521 |
+
# Draw each text segment within its bounding box
|
| 522 |
+
for i in range(len(textline_preds['preds'])):
|
| 523 |
+
left_x = textline_images['left'][i]
|
| 524 |
+
center_y = textline_images['center'][i][1]
|
| 525 |
+
#height = textline_images['height'][i]
|
| 526 |
+
width = textline_images['width'][i]
|
| 527 |
+
text = textline_preds['preds'][i]
|
| 528 |
+
|
| 529 |
+
# dynamic or static text size
|
| 530 |
+
if font_size==-1:
|
| 531 |
+
font = self.adjust_font_size(draw, text, width)
|
| 532 |
+
else:
|
| 533 |
+
font = ImageFont.load_default(font_size)
|
| 534 |
+
draw.text((left_x, center_y), text, fill=(0, 0, 0), font=font, align='left')
|
| 535 |
+
|
| 536 |
+
return img_gen
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
def visualize_model_output(self, prediction, img):
|
| 540 |
+
"""
|
| 541 |
+
Visualizes the output of a model prediction by overlaying predicted classes with distinct colors onto the original image.
|
| 542 |
+
|
| 543 |
+
Parameters:
|
| 544 |
+
- prediction (ndarray): A 3D array where the first channel holds the class predictions.
|
| 545 |
+
- img (ndarray): The original image to overlay predictions onto. This should be in the same dimensions or resized accordingly.
|
| 546 |
+
|
| 547 |
+
Returns:
|
| 548 |
+
- ndarray: An image where the model's predictions are overlaid on the original image using a predefined color map.
|
| 549 |
+
|
| 550 |
+
Description:
|
| 551 |
+
The function first identifies unique classes present in the prediction's first channel. Each class is assigned a specific color from a predefined dictionary `rgb_colors`. The function then creates an output image where each pixel's color corresponds to the class predicted at that location.
|
| 552 |
+
|
| 553 |
+
The function resizes the original image to match the dimensions of the prediction if necessary. It then blends the original image and the colored prediction output using OpenCV's `addWeighted` method to produce a final image that highlights the model's predictions with transparency.
|
| 554 |
+
|
| 555 |
+
Note:
|
| 556 |
+
- This function relies on `numpy` for array manipulations and `cv2` for image processing.
|
| 557 |
+
- Ensure the `rgb_colors` dictionary contains enough colors for all classes your model can predict.
|
| 558 |
+
- The function assumes `prediction` array's shape is compatible with `img`.
|
| 559 |
+
"""
|
| 560 |
+
|
| 561 |
+
unique_classes = np.unique(prediction[:,:,0])
|
| 562 |
+
rgb_colors = {'0' : [255, 255, 255],
|
| 563 |
+
'1' : [255, 0, 0],
|
| 564 |
+
'2' : [255, 125, 0],
|
| 565 |
+
'3' : [255, 0, 125],
|
| 566 |
+
'4' : [125, 125, 125],
|
| 567 |
+
'5' : [125, 125, 0],
|
| 568 |
+
'6' : [0, 125, 255],
|
| 569 |
+
'7' : [0, 125, 0],
|
| 570 |
+
'8' : [125, 125, 125],
|
| 571 |
+
'9' : [0, 125, 255],
|
| 572 |
+
'10' : [125, 0, 125],
|
| 573 |
+
'11' : [0, 255, 0],
|
| 574 |
+
'12' : [0, 0, 255],
|
| 575 |
+
'13' : [0, 255, 255],
|
| 576 |
+
'14' : [255, 125, 125],
|
| 577 |
+
'15' : [255, 0, 255]}
|
| 578 |
+
|
| 579 |
+
output = np.zeros(prediction.shape)
|
| 580 |
+
|
| 581 |
+
for unq_class in unique_classes:
|
| 582 |
+
rgb_class_unique = rgb_colors[str(int(unq_class))]
|
| 583 |
+
output[:,:,0][prediction[:,:,0]==unq_class] = rgb_class_unique[0]
|
| 584 |
+
output[:,:,1][prediction[:,:,0]==unq_class] = rgb_class_unique[1]
|
| 585 |
+
output[:,:,2][prediction[:,:,0]==unq_class] = rgb_class_unique[2]
|
| 586 |
+
|
| 587 |
+
img = resize_image(img, output.shape[0], output.shape[1])
|
| 588 |
+
|
| 589 |
+
output = output.astype(np.int32)
|
| 590 |
+
img = img.astype(np.int32)
|
| 591 |
+
|
| 592 |
+
#added_image = cv2.addWeighted(img,0.5,output,0.1,0) # orig by eynollah (gives dark image output)
|
| 593 |
+
added_image = cv2.addWeighted(img,0.8,output,0.2,10)
|
| 594 |
+
|
| 595 |
+
return added_image
|