File size: 4,554 Bytes
91066f0
 
 
 
 
 
 
 
 
 
 
 
176a5a5
e95479f
 
91066f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c23f1e4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import streamlit as st
import os
from dotenv import load_dotenv
from tavily import TavilyClient
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.agents import AgentExecutor, Tool
from langchain.agents import create_tool_calling_agent
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langgraph.graph import END, Graph


load_dotenv()

GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")

llm = ChatGoogleGenerativeAI(
    model="gemini-2.0-flash",  
    temperature=0.7,
    google_api_key=GOOGLE_API_KEY
)


tavily_client = TavilyClient(api_key=TAVILY_API_KEY)

def tavily_search(query: str):
    try:
        result = tavily_client.search(
            query=query,
            search_depth="advanced",
            include_raw_content=True
        )
        return str(result)
    except Exception as e:
        return f"Error searching Tavily: {str(e)}"


tavily_tool = Tool(
    name="tavily_search",
    func=tavily_search,
    description="A premium search engine that returns high-quality, up-to-date information."
)


def create_researcher_agent():
    prompt = ChatPromptTemplate.from_messages([
        ("system", """You are a senior research analyst. Your job:
1. Use Tavily for authoritative info.
2. Cross-validate across multiple sources.
3. Extract key facts, stats & quotes.
4. Always include source URLs."""),
        ("user", "{input}"),
        MessagesPlaceholder(variable_name="agent_scratchpad")
    ])
    agent = create_tool_calling_agent(llm, [tavily_tool], prompt)
    return AgentExecutor(agent=agent, tools=[tavily_tool])


def generate_final_report(research_output: str) -> str:
    prompt = ChatPromptTemplate.from_messages([
        ("system", """You are a technical writer. Structure and present the research:
- Use markdown formatting
- Academic tone
- Include proper citations
- Highlight insights.
- Make sure to answer the user's original query completely."""), 
        ("user", "{input}")
    ])
    formatted_prompt = prompt.format_messages(input=research_output)
    return llm.invoke(formatted_prompt).content


def create_workflow():
    workflow = Graph()

    def research_node(state):
        agent = create_researcher_agent()
        output = agent.invoke({"input": state["query"], "agent_scratchpad": []})
        return {"research_output": output["output"]}

    def write_node(state):
        report = generate_final_report(state["research_output"])
        return {"final_report": report}

    workflow.add_node("research", research_node)
    workflow.add_node("write", write_node)
    workflow.add_edge("research", "write")
    workflow.add_edge("write", END)
    workflow.set_entry_point("research")
    return workflow


def main():
    st.set_page_config(page_title="AI Research Assistant", page_icon="πŸ”", layout="wide")
    st.title(" AI Research Assistant")
    st.markdown("""Enter a query and let the AI prepare a research-backed report:
- Searches authoritative sources
- Validates information
- Delivers a professional markdown report.
""")

    query = st.text_area("Enter your research query:",
                         placeholder="e.g., 'Impact of AI on healthcare jobs in 2024'",
                         height=100)

    if st.button("Research", type="primary"):
        if not query:
            st.warning("Please enter a research query first.")
            return

        if not GOOGLE_API_KEY or not TAVILY_API_KEY:
            st.error(" API keys missing! Check your `.env` file.")
            return

        with st.spinner("Researching your topic..."):
            try:
                workflow = create_workflow()
                app = workflow.compile()
                
                
                final_output = app.invoke({"query": query})
                
                
                with st.expander(" Research Report", expanded=True):
                    if "final_report" in final_output:
                        st.markdown(final_output["final_report"])
                    elif "research_output" in final_output:
                        st.markdown("### Research Findings (Unformatted)")
                        st.markdown(final_output["research_output"])
                    else:
                        st.warning("No results were generated")

                st.success(" Research completed!")

            except Exception as e:
                st.error(f" An error occurred: {str(e)}")
                st.exception(e)


if __name__ == "__main__":
    main()