Upload 2 files
Browse files- app2.py +54 -0
- breast_cancer_detection_model5.h5 +3 -0
app2.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import cv2 # Ensure you have opencv-python installed
|
4 |
+
from tensorflow.keras.models import load_model # Ensure you have TensorFlow installed
|
5 |
+
|
6 |
+
IMG_SIZE = 128 # Image size for the model input
|
7 |
+
|
8 |
+
# Load your trained model
|
9 |
+
model = load_model(r'breast_cancer_detection_model5.h5') # Update this path to your actual model file
|
10 |
+
|
11 |
+
# Define class names according to your model
|
12 |
+
class_names = ['benign', 'malignant', 'normal'] # Update this list if different
|
13 |
+
|
14 |
+
# Define the prediction function
|
15 |
+
def predict_cancer(images):
|
16 |
+
results = []
|
17 |
+
for img in images:
|
18 |
+
# Convert image to grayscale (if it's not already), resize, and normalize
|
19 |
+
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Convert to grayscale if not already
|
20 |
+
img = cv2.resize(img, (IMG_SIZE, IMG_SIZE)) # Resize to match model input
|
21 |
+
img = np.expand_dims(img, axis=-1) # Add channel dimension
|
22 |
+
img = img / 255.0 # Normalize
|
23 |
+
img = np.expand_dims(img, axis=0) # Add batch dimension
|
24 |
+
|
25 |
+
# Make prediction
|
26 |
+
prediction = model.predict(img)
|
27 |
+
class_idx = np.argmax(prediction[0])
|
28 |
+
class_name = class_names[class_idx]
|
29 |
+
probability = np.max(prediction[0])
|
30 |
+
results.append(f"{class_name} (Probability: {probability:.2f})")
|
31 |
+
|
32 |
+
return results
|
33 |
+
|
34 |
+
# Define Gradio interface
|
35 |
+
def classify_images(images):
|
36 |
+
if not isinstance(images, list): # Ensure images is a list of images
|
37 |
+
images = [images]
|
38 |
+
return predict_cancer(images)
|
39 |
+
|
40 |
+
# Define the Gradio interface
|
41 |
+
input_images = gr.Image(type='numpy', label='Upload Ultrasound Images')
|
42 |
+
output_labels = gr.Textbox(label='Predictions')
|
43 |
+
|
44 |
+
gr_interface = gr.Interface(
|
45 |
+
fn=classify_images,
|
46 |
+
inputs=input_images,
|
47 |
+
outputs=output_labels,
|
48 |
+
title="Breast Cancer Detection from Ultrasound Images",
|
49 |
+
description="Upload multiple breast ultrasound images to get predictions on whether they show benign, malignant, or normal conditions."
|
50 |
+
)
|
51 |
+
|
52 |
+
# Launch the Gradio app
|
53 |
+
if __name__ == "__main__":
|
54 |
+
gr_interface.launch()
|
breast_cancer_detection_model5.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8aa49401e6dc58a02a9476b5865eaea3db31dc2f44f122211f0fdd1f01a9172c
|
3 |
+
size 39706832
|