Spaces:
Runtime error
Runtime error
| ''' | |
| * Copyright (c) 2023 Salesforce, Inc. | |
| * All rights reserved. | |
| * SPDX-License-Identifier: Apache License 2.0 | |
| * For full license text, see LICENSE.txt file in the repo root or http://www.apache.org/licenses/ | |
| * By Can Qin | |
| * Modified from ControlNet repo: https://github.com/lllyasviel/ControlNet | |
| * Copyright (c) 2023 Lvmin Zhang and Maneesh Agrawala | |
| ''' | |
| import os | |
| import sys | |
| import torch | |
| import torch.nn as nn | |
| import torch.utils.model_zoo as model_zoo | |
| from torch.nn import functional as F | |
| class BlockTypeA(nn.Module): | |
| def __init__(self, in_c1, in_c2, out_c1, out_c2, upscale = True): | |
| super(BlockTypeA, self).__init__() | |
| self.conv1 = nn.Sequential( | |
| nn.Conv2d(in_c2, out_c2, kernel_size=1), | |
| nn.BatchNorm2d(out_c2), | |
| nn.ReLU(inplace=True) | |
| ) | |
| self.conv2 = nn.Sequential( | |
| nn.Conv2d(in_c1, out_c1, kernel_size=1), | |
| nn.BatchNorm2d(out_c1), | |
| nn.ReLU(inplace=True) | |
| ) | |
| self.upscale = upscale | |
| def forward(self, a, b): | |
| b = self.conv1(b) | |
| a = self.conv2(a) | |
| b = F.interpolate(b, scale_factor=2.0, mode='bilinear', align_corners=True) | |
| return torch.cat((a, b), dim=1) | |
| class BlockTypeB(nn.Module): | |
| def __init__(self, in_c, out_c): | |
| super(BlockTypeB, self).__init__() | |
| self.conv1 = nn.Sequential( | |
| nn.Conv2d(in_c, in_c, kernel_size=3, padding=1), | |
| nn.BatchNorm2d(in_c), | |
| nn.ReLU() | |
| ) | |
| self.conv2 = nn.Sequential( | |
| nn.Conv2d(in_c, out_c, kernel_size=3, padding=1), | |
| nn.BatchNorm2d(out_c), | |
| nn.ReLU() | |
| ) | |
| def forward(self, x): | |
| x = self.conv1(x) + x | |
| x = self.conv2(x) | |
| return x | |
| class BlockTypeC(nn.Module): | |
| def __init__(self, in_c, out_c): | |
| super(BlockTypeC, self).__init__() | |
| self.conv1 = nn.Sequential( | |
| nn.Conv2d(in_c, in_c, kernel_size=3, padding=5, dilation=5), | |
| nn.BatchNorm2d(in_c), | |
| nn.ReLU() | |
| ) | |
| self.conv2 = nn.Sequential( | |
| nn.Conv2d(in_c, in_c, kernel_size=3, padding=1), | |
| nn.BatchNorm2d(in_c), | |
| nn.ReLU() | |
| ) | |
| self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1) | |
| def forward(self, x): | |
| x = self.conv1(x) | |
| x = self.conv2(x) | |
| x = self.conv3(x) | |
| return x | |
| def _make_divisible(v, divisor, min_value=None): | |
| """ | |
| This function is taken from the original tf repo. | |
| It ensures that all layers have a channel number that is divisible by 8 | |
| It can be seen here: | |
| https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py | |
| :param v: | |
| :param divisor: | |
| :param min_value: | |
| :return: | |
| """ | |
| if min_value is None: | |
| min_value = divisor | |
| new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) | |
| # Make sure that round down does not go down by more than 10%. | |
| if new_v < 0.9 * v: | |
| new_v += divisor | |
| return new_v | |
| class ConvBNReLU(nn.Sequential): | |
| def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): | |
| self.channel_pad = out_planes - in_planes | |
| self.stride = stride | |
| #padding = (kernel_size - 1) // 2 | |
| # TFLite uses slightly different padding than PyTorch | |
| if stride == 2: | |
| padding = 0 | |
| else: | |
| padding = (kernel_size - 1) // 2 | |
| super(ConvBNReLU, self).__init__( | |
| nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False), | |
| nn.BatchNorm2d(out_planes), | |
| nn.ReLU6(inplace=True) | |
| ) | |
| self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride) | |
| def forward(self, x): | |
| # TFLite uses different padding | |
| if self.stride == 2: | |
| x = F.pad(x, (0, 1, 0, 1), "constant", 0) | |
| #print(x.shape) | |
| for module in self: | |
| if not isinstance(module, nn.MaxPool2d): | |
| x = module(x) | |
| return x | |
| class InvertedResidual(nn.Module): | |
| def __init__(self, inp, oup, stride, expand_ratio): | |
| super(InvertedResidual, self).__init__() | |
| self.stride = stride | |
| assert stride in [1, 2] | |
| hidden_dim = int(round(inp * expand_ratio)) | |
| self.use_res_connect = self.stride == 1 and inp == oup | |
| layers = [] | |
| if expand_ratio != 1: | |
| # pw | |
| layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) | |
| layers.extend([ | |
| # dw | |
| ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), | |
| # pw-linear | |
| nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), | |
| nn.BatchNorm2d(oup), | |
| ]) | |
| self.conv = nn.Sequential(*layers) | |
| def forward(self, x): | |
| if self.use_res_connect: | |
| return x + self.conv(x) | |
| else: | |
| return self.conv(x) | |
| class MobileNetV2(nn.Module): | |
| def __init__(self, pretrained=True): | |
| """ | |
| MobileNet V2 main class | |
| Args: | |
| num_classes (int): Number of classes | |
| width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount | |
| inverted_residual_setting: Network structure | |
| round_nearest (int): Round the number of channels in each layer to be a multiple of this number | |
| Set to 1 to turn off rounding | |
| block: Module specifying inverted residual building block for mobilenet | |
| """ | |
| super(MobileNetV2, self).__init__() | |
| block = InvertedResidual | |
| input_channel = 32 | |
| last_channel = 1280 | |
| width_mult = 1.0 | |
| round_nearest = 8 | |
| inverted_residual_setting = [ | |
| # t, c, n, s | |
| [1, 16, 1, 1], | |
| [6, 24, 2, 2], | |
| [6, 32, 3, 2], | |
| [6, 64, 4, 2], | |
| #[6, 96, 3, 1], | |
| #[6, 160, 3, 2], | |
| #[6, 320, 1, 1], | |
| ] | |
| # only check the first element, assuming user knows t,c,n,s are required | |
| if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4: | |
| raise ValueError("inverted_residual_setting should be non-empty " | |
| "or a 4-element list, got {}".format(inverted_residual_setting)) | |
| # building first layer | |
| input_channel = _make_divisible(input_channel * width_mult, round_nearest) | |
| self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest) | |
| features = [ConvBNReLU(4, input_channel, stride=2)] | |
| # building inverted residual blocks | |
| for t, c, n, s in inverted_residual_setting: | |
| output_channel = _make_divisible(c * width_mult, round_nearest) | |
| for i in range(n): | |
| stride = s if i == 0 else 1 | |
| features.append(block(input_channel, output_channel, stride, expand_ratio=t)) | |
| input_channel = output_channel | |
| self.features = nn.Sequential(*features) | |
| self.fpn_selected = [3, 6, 10] | |
| # weight initialization | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| nn.init.kaiming_normal_(m.weight, mode='fan_out') | |
| if m.bias is not None: | |
| nn.init.zeros_(m.bias) | |
| elif isinstance(m, nn.BatchNorm2d): | |
| nn.init.ones_(m.weight) | |
| nn.init.zeros_(m.bias) | |
| elif isinstance(m, nn.Linear): | |
| nn.init.normal_(m.weight, 0, 0.01) | |
| nn.init.zeros_(m.bias) | |
| #if pretrained: | |
| # self._load_pretrained_model() | |
| def _forward_impl(self, x): | |
| # This exists since TorchScript doesn't support inheritance, so the superclass method | |
| # (this one) needs to have a name other than `forward` that can be accessed in a subclass | |
| fpn_features = [] | |
| for i, f in enumerate(self.features): | |
| if i > self.fpn_selected[-1]: | |
| break | |
| x = f(x) | |
| if i in self.fpn_selected: | |
| fpn_features.append(x) | |
| c2, c3, c4 = fpn_features | |
| return c2, c3, c4 | |
| def forward(self, x): | |
| return self._forward_impl(x) | |
| def _load_pretrained_model(self): | |
| pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth') | |
| model_dict = {} | |
| state_dict = self.state_dict() | |
| for k, v in pretrain_dict.items(): | |
| if k in state_dict: | |
| model_dict[k] = v | |
| state_dict.update(model_dict) | |
| self.load_state_dict(state_dict) | |
| class MobileV2_MLSD_Tiny(nn.Module): | |
| def __init__(self): | |
| super(MobileV2_MLSD_Tiny, self).__init__() | |
| self.backbone = MobileNetV2(pretrained=True) | |
| self.block12 = BlockTypeA(in_c1= 32, in_c2= 64, | |
| out_c1= 64, out_c2=64) | |
| self.block13 = BlockTypeB(128, 64) | |
| self.block14 = BlockTypeA(in_c1 = 24, in_c2 = 64, | |
| out_c1= 32, out_c2= 32) | |
| self.block15 = BlockTypeB(64, 64) | |
| self.block16 = BlockTypeC(64, 16) | |
| def forward(self, x): | |
| c2, c3, c4 = self.backbone(x) | |
| x = self.block12(c3, c4) | |
| x = self.block13(x) | |
| x = self.block14(c2, x) | |
| x = self.block15(x) | |
| x = self.block16(x) | |
| x = x[:, 7:, :, :] | |
| #print(x.shape) | |
| x = F.interpolate(x, scale_factor=2.0, mode='bilinear', align_corners=True) | |
| return x |