Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import shutil
|
| 4 |
+
import fitz
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import numpy as np
|
| 7 |
+
import cv2
|
| 8 |
+
import pytesseract
|
| 9 |
+
from pytesseract import Output
|
| 10 |
+
import zipfile
|
| 11 |
+
from pdf2image import convert_from_path
|
| 12 |
+
|
| 13 |
+
# [Keep all the helper functions from the original code]
|
| 14 |
+
def convert_to_rgb(image_path):
|
| 15 |
+
img = Image.open(image_path)
|
| 16 |
+
rgb_img = img.convert("RGB")
|
| 17 |
+
return rgb_img
|
| 18 |
+
|
| 19 |
+
def preprocess_image(image):
|
| 20 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 21 |
+
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
| 22 |
+
denoised = cv2.fastNlMeansDenoising(binary, None, 30, 7, 21)
|
| 23 |
+
resized = cv2.resize(denoised, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)
|
| 24 |
+
return resized
|
| 25 |
+
|
| 26 |
+
def extract_vertical_blocks(image):
|
| 27 |
+
image_np = np.array(image)
|
| 28 |
+
data = pytesseract.image_to_data(image_np, lang='fra', output_type=Output.DICT)
|
| 29 |
+
|
| 30 |
+
blocks = []
|
| 31 |
+
current_block = ""
|
| 32 |
+
current_block_coords = [float('inf'), float('inf'), 0, 0]
|
| 33 |
+
last_bottom = -1
|
| 34 |
+
line_height = 0
|
| 35 |
+
|
| 36 |
+
for i in range(len(data['text'])):
|
| 37 |
+
if int(data['conf'][i]) > 0:
|
| 38 |
+
text = data['text'][i]
|
| 39 |
+
x, y, w, h = data['left'][i], data['top'][i], data['width'][i], data['height'][i]
|
| 40 |
+
|
| 41 |
+
if line_height == 0:
|
| 42 |
+
line_height = h * 1.2
|
| 43 |
+
|
| 44 |
+
if y > last_bottom + line_height:
|
| 45 |
+
if current_block:
|
| 46 |
+
blocks.append({
|
| 47 |
+
"text": current_block.strip(),
|
| 48 |
+
"coords": current_block_coords
|
| 49 |
+
})
|
| 50 |
+
current_block = ""
|
| 51 |
+
current_block_coords = [float('inf'), float('inf'), 0, 0]
|
| 52 |
+
|
| 53 |
+
current_block += text + " "
|
| 54 |
+
current_block_coords[0] = min(current_block_coords[0], x)
|
| 55 |
+
current_block_coords[1] = min(current_block_coords[1], y)
|
| 56 |
+
current_block_coords[2] = max(current_block_coords[2], x + w)
|
| 57 |
+
current_block_coords[3] = max(current_block_coords[3], y + h)
|
| 58 |
+
|
| 59 |
+
last_bottom = y + h
|
| 60 |
+
|
| 61 |
+
if current_block:
|
| 62 |
+
blocks.append({
|
| 63 |
+
"text": current_block.strip(),
|
| 64 |
+
"coords": current_block_coords
|
| 65 |
+
})
|
| 66 |
+
|
| 67 |
+
return blocks
|
| 68 |
+
|
| 69 |
+
def draw_blocks_on_image(image_path, blocks, output_path):
|
| 70 |
+
image = cv2.imread(image_path)
|
| 71 |
+
for block in blocks:
|
| 72 |
+
coords = block['coords']
|
| 73 |
+
cv2.rectangle(image, (coords[0], coords[1]), (coords[2], coords[3]), (0, 0, 255), 2)
|
| 74 |
+
cv2.imwrite(output_path, image)
|
| 75 |
+
return output_path
|
| 76 |
+
|
| 77 |
+
def process_image(image, output_folder, page_number):
|
| 78 |
+
image = convert_to_rgb(image)
|
| 79 |
+
blocks = extract_vertical_blocks(image)
|
| 80 |
+
base_name = f'page_{page_number + 1}.png'
|
| 81 |
+
image_path = os.path.join(output_folder, base_name)
|
| 82 |
+
image.save(image_path)
|
| 83 |
+
annotated_image_path = os.path.join(output_folder, f'annotated_{base_name}')
|
| 84 |
+
annotated_image_path = draw_blocks_on_image(image_path, blocks, annotated_image_path)
|
| 85 |
+
return blocks, annotated_image_path
|
| 86 |
+
|
| 87 |
+
def save_extracted_text(blocks, page_number, output_folder):
|
| 88 |
+
text_file_path = os.path.join(output_folder, 'extracted_text.txt')
|
| 89 |
+
with open(text_file_path, 'a', encoding='utf-8') as f:
|
| 90 |
+
f.write(f"[PAGE {page_number}]\n")
|
| 91 |
+
for block in blocks:
|
| 92 |
+
f.write(block['text'] + "\n")
|
| 93 |
+
f.write(f"[FIN DE PAGE {page_number}]\n\n")
|
| 94 |
+
return text_file_path
|
| 95 |
+
|
| 96 |
+
# Modified process_pdf function with better temp file handling
|
| 97 |
+
def process_pdf(pdf_file):
|
| 98 |
+
# Create unique temporary working directory
|
| 99 |
+
temp_dir = os.path.join(os.getcwd(), "temp_processing")
|
| 100 |
+
output_dir = os.path.join(temp_dir, 'output_images')
|
| 101 |
+
|
| 102 |
+
# Clean up any existing temp directories
|
| 103 |
+
if os.path.exists(temp_dir):
|
| 104 |
+
shutil.rmtree(temp_dir)
|
| 105 |
+
|
| 106 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 107 |
+
|
| 108 |
+
try:
|
| 109 |
+
# Convert PDF to images
|
| 110 |
+
images = convert_from_path(pdf_file.name)
|
| 111 |
+
|
| 112 |
+
# Process each image
|
| 113 |
+
annotated_images = []
|
| 114 |
+
for i, img in enumerate(images):
|
| 115 |
+
# Save temporary image
|
| 116 |
+
temp_img_path = os.path.join(temp_dir, f'temp_page_{i}.png')
|
| 117 |
+
img.save(temp_img_path)
|
| 118 |
+
|
| 119 |
+
# Process the image
|
| 120 |
+
blocks, annotated_image_path = process_image(temp_img_path, output_dir, i)
|
| 121 |
+
annotated_images.append(annotated_image_path)
|
| 122 |
+
save_extracted_text(blocks, i + 1, output_dir)
|
| 123 |
+
|
| 124 |
+
# Create ZIP file of annotated images
|
| 125 |
+
zip_path = os.path.join(temp_dir, "annotated_images.zip")
|
| 126 |
+
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
| 127 |
+
for img_path in annotated_images:
|
| 128 |
+
zipf.write(img_path, os.path.basename(img_path))
|
| 129 |
+
|
| 130 |
+
# Get the text file
|
| 131 |
+
text_file_path = os.path.join(output_dir, 'extracted_text.txt')
|
| 132 |
+
|
| 133 |
+
# Read the files into memory before cleanup
|
| 134 |
+
with open(text_file_path, 'rb') as f:
|
| 135 |
+
text_content = f.read()
|
| 136 |
+
with open(zip_path, 'rb') as f:
|
| 137 |
+
zip_content = f.read()
|
| 138 |
+
|
| 139 |
+
return (text_file_path, zip_path)
|
| 140 |
+
|
| 141 |
+
except Exception as e:
|
| 142 |
+
raise gr.Error(f"Error processing PDF: {str(e)}")
|
| 143 |
+
|
| 144 |
+
finally:
|
| 145 |
+
# Clean up will be handled by Hugging Face Spaces
|
| 146 |
+
pass
|
| 147 |
+
|
| 148 |
+
# Create Gradio interface with theme and better styling
|
| 149 |
+
css = """
|
| 150 |
+
.gradio-container {
|
| 151 |
+
font-family: 'IBM Plex Sans', sans-serif;
|
| 152 |
+
}
|
| 153 |
+
.gr-button {
|
| 154 |
+
color: white;
|
| 155 |
+
border-radius: 8px;
|
| 156 |
+
background: linear-gradient(45deg, #7928CA, #FF0080);
|
| 157 |
+
border: none;
|
| 158 |
+
}
|
| 159 |
+
"""
|
| 160 |
+
|
| 161 |
+
# Create Gradio interface
|
| 162 |
+
demo = gr.Interface(
|
| 163 |
+
fn=process_pdf,
|
| 164 |
+
inputs=[
|
| 165 |
+
gr.File(
|
| 166 |
+
label="Upload PDF Document",
|
| 167 |
+
file_types=[".pdf"],
|
| 168 |
+
type="filepath"
|
| 169 |
+
)
|
| 170 |
+
],
|
| 171 |
+
outputs=[
|
| 172 |
+
gr.File(label="Extracted Text (TXT)"),
|
| 173 |
+
gr.File(label="Annotated Images (ZIP)")
|
| 174 |
+
],
|
| 175 |
+
title="PDF Text Extraction and Annotation",
|
| 176 |
+
description="""
|
| 177 |
+
Upload a PDF document to:
|
| 178 |
+
1. Extract text content
|
| 179 |
+
2. Get annotated images showing detected text blocks
|
| 180 |
+
|
| 181 |
+
Supports multiple pages and French language text.
|
| 182 |
+
""",
|
| 183 |
+
article="Created by [Your Name] - [Your GitHub/Profile Link]",
|
| 184 |
+
css=css,
|
| 185 |
+
examples=[], # Add example PDFs if you have any
|
| 186 |
+
cache_examples=False,
|
| 187 |
+
theme=gr.themes.Soft()
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
# Launch the app
|
| 191 |
+
if __name__ == "__main__":
|
| 192 |
+
demo.launch()
|