Spaces:
Sleeping
Sleeping
Commit
·
1f68f21
1
Parent(s):
60a5c82
init
Browse files- app.py +327 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, math, csv
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from streamlit_image_select import image_select
|
| 4 |
+
import cv2
|
| 5 |
+
import numpy as np
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import matplotlib.colors as mcolors
|
| 8 |
+
|
| 9 |
+
class DirectoryManager:
|
| 10 |
+
def __init__(self, output_dir):
|
| 11 |
+
self.dir_output = output_dir
|
| 12 |
+
self.mask_flag = os.path.join(output_dir, "mask_flag")
|
| 13 |
+
self.mask_plant = os.path.join(output_dir, "mask_plant")
|
| 14 |
+
self.mask_plant_plot = os.path.join(output_dir, "mask_plant_plot")
|
| 15 |
+
self.plant_rgb = os.path.join(output_dir, "plant_rgb")
|
| 16 |
+
self.plot_rgb = os.path.join(output_dir, "plot_rgb")
|
| 17 |
+
self.plant_rgb_warp = os.path.join(output_dir, "plant_rgb_warp")
|
| 18 |
+
self.plant_mask_warp = os.path.join(output_dir, "plant_mask_warp")
|
| 19 |
+
self.data = os.path.join(output_dir, "data")
|
| 20 |
+
|
| 21 |
+
def create_directories(self):
|
| 22 |
+
os.makedirs(self.dir_output, exist_ok=True)
|
| 23 |
+
os.makedirs(self.mask_flag, exist_ok=True)
|
| 24 |
+
os.makedirs(self.mask_plant, exist_ok=True)
|
| 25 |
+
os.makedirs(self.mask_plant_plot, exist_ok=True)
|
| 26 |
+
os.makedirs(self.plant_rgb, exist_ok=True)
|
| 27 |
+
os.makedirs(self.plot_rgb, exist_ok=True)
|
| 28 |
+
os.makedirs(self.plant_rgb_warp, exist_ok=True)
|
| 29 |
+
os.makedirs(self.plant_mask_warp, exist_ok=True)
|
| 30 |
+
os.makedirs(self.data, exist_ok=True)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def hex_to_hsv_bounds(hex_color, sat_value, val_value):
|
| 35 |
+
# Convert RGB hex to color
|
| 36 |
+
rgb_color = mcolors.hex2color(hex_color)
|
| 37 |
+
hsv_color = mcolors.rgb_to_hsv(np.array(rgb_color).reshape(1, 1, 3))
|
| 38 |
+
|
| 39 |
+
# Adjust the saturation and value components based on user's input
|
| 40 |
+
hsv_color[0][0][1] = sat_value / 255.0 # Saturation
|
| 41 |
+
hsv_color[0][0][2] = val_value / 255.0 # Value
|
| 42 |
+
|
| 43 |
+
hsv_bound = tuple((hsv_color * np.array([179, 255, 255])).astype(int)[0][0])
|
| 44 |
+
|
| 45 |
+
return hsv_bound
|
| 46 |
+
|
| 47 |
+
def warp_image(img, vertices):
|
| 48 |
+
# Compute distances between the vertices to determine the size of the target square
|
| 49 |
+
distances = [np.linalg.norm(np.array(vertices[i]) - np.array(vertices[i+1])) for i in range(len(vertices)-1)]
|
| 50 |
+
distances.append(np.linalg.norm(np.array(vertices[-1]) - np.array(vertices[0]))) # Add the distance between the last and first point
|
| 51 |
+
max_distance = max(distances)
|
| 52 |
+
|
| 53 |
+
# Define target vertices for the square
|
| 54 |
+
dst_vertices = np.array([
|
| 55 |
+
[max_distance - 1, 0],
|
| 56 |
+
[0, 0],
|
| 57 |
+
[0, max_distance - 1],
|
| 58 |
+
[max_distance - 1, max_distance - 1]
|
| 59 |
+
], dtype="float32")
|
| 60 |
+
|
| 61 |
+
# Compute the perspective transform matrix using the provided vertices
|
| 62 |
+
matrix = cv2.getPerspectiveTransform(np.array(vertices, dtype="float32"), dst_vertices)
|
| 63 |
+
|
| 64 |
+
# Warp the image to the square
|
| 65 |
+
warped_img = cv2.warpPerspective(img, matrix, (int(max_distance), int(max_distance)))
|
| 66 |
+
|
| 67 |
+
return warped_img
|
| 68 |
+
|
| 69 |
+
def process_image(image_path, flag_lower, flag_upper, plant_lower, plant_upper):
|
| 70 |
+
img = cv2.imread(image_path)
|
| 71 |
+
|
| 72 |
+
# Check if image is valid
|
| 73 |
+
if img is None:
|
| 74 |
+
print(f"Error reading image from path: {image_path}")
|
| 75 |
+
return None, None, None, None, None, None, None, None, None, None
|
| 76 |
+
|
| 77 |
+
hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # Convert image to HSV
|
| 78 |
+
|
| 79 |
+
# Explicitly ensure bounds are integer tuples
|
| 80 |
+
flag_lower = tuple(int(x) for x in flag_lower)
|
| 81 |
+
flag_upper = tuple(int(x) for x in flag_upper)
|
| 82 |
+
plant_lower = tuple(int(x) for x in plant_lower)
|
| 83 |
+
plant_upper = tuple(int(x) for x in plant_upper)
|
| 84 |
+
|
| 85 |
+
flag_mask = cv2.inRange(hsv_img, flag_lower, flag_upper)
|
| 86 |
+
plant_mask = cv2.inRange(hsv_img, plant_lower, plant_upper)
|
| 87 |
+
|
| 88 |
+
# Find contours
|
| 89 |
+
contours, _ = cv2.findContours(flag_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 90 |
+
|
| 91 |
+
# Sort contours by area and keep only the largest 4
|
| 92 |
+
sorted_contours = sorted(contours, key=cv2.contourArea, reverse=True)[:4]
|
| 93 |
+
|
| 94 |
+
# If there are not 4 largest contours, return
|
| 95 |
+
if len(sorted_contours) != 4:
|
| 96 |
+
return None, None, None, None, None, None, None, None, None, None
|
| 97 |
+
|
| 98 |
+
# Create a new mask with only the largest 4 contours
|
| 99 |
+
largest_4_flag_mask = np.zeros_like(flag_mask)
|
| 100 |
+
cv2.drawContours(largest_4_flag_mask, sorted_contours, -1, (255), thickness=cv2.FILLED)
|
| 101 |
+
|
| 102 |
+
# Compute the centroid for each contour
|
| 103 |
+
centroids = []
|
| 104 |
+
for contour in sorted_contours:
|
| 105 |
+
M = cv2.moments(contour)
|
| 106 |
+
if M["m00"] != 0:
|
| 107 |
+
cx = int(M["m10"] / M["m00"])
|
| 108 |
+
cy = int(M["m01"] / M["m00"])
|
| 109 |
+
else:
|
| 110 |
+
cx, cy = 0, 0
|
| 111 |
+
centroids.append((cx, cy))
|
| 112 |
+
|
| 113 |
+
# Compute the centroid of the centroids
|
| 114 |
+
centroid_x = sum(x for x, y in centroids) / 4
|
| 115 |
+
centroid_y = sum(y for x, y in centroids) / 4
|
| 116 |
+
|
| 117 |
+
# Sort the centroids
|
| 118 |
+
centroids.sort(key=lambda point: (-math.atan2(point[1] - centroid_y, point[0] - centroid_x)) % (2 * np.pi))
|
| 119 |
+
|
| 120 |
+
# Create a polygon mask using the sorted centroids
|
| 121 |
+
poly_mask = np.zeros_like(flag_mask)
|
| 122 |
+
cv2.fillPoly(poly_mask, [np.array(centroids)], 255)
|
| 123 |
+
|
| 124 |
+
# Mask the plant_mask with poly_mask
|
| 125 |
+
mask_plant_plot = cv2.bitwise_and(plant_mask, plant_mask, mask=poly_mask)
|
| 126 |
+
|
| 127 |
+
# Count the number of black pixels inside the quadrilateral
|
| 128 |
+
total_pixels_in_quad = np.prod(poly_mask.shape)
|
| 129 |
+
white_pixels_in_quad = np.sum(poly_mask == 255)
|
| 130 |
+
black_pixels_in_quad = total_pixels_in_quad - white_pixels_in_quad
|
| 131 |
+
|
| 132 |
+
# Extract the RGB pixels from the original image using the mask_plant_plot
|
| 133 |
+
plant_rgb = cv2.bitwise_and(img, img, mask=mask_plant_plot)
|
| 134 |
+
|
| 135 |
+
# Draw the bounding quadrilateral
|
| 136 |
+
plot_rgb = plant_rgb.copy()
|
| 137 |
+
for i in range(4):
|
| 138 |
+
cv2.line(plot_rgb, centroids[i], centroids[(i+1)%4], (0, 0, 255), 3)
|
| 139 |
+
|
| 140 |
+
# Convert the masks to RGB for visualization
|
| 141 |
+
flag_mask_rgb = cv2.cvtColor(flag_mask, cv2.COLOR_GRAY2RGB)
|
| 142 |
+
orange_color = [255, 165, 0] # RGB value for orange
|
| 143 |
+
flag_mask_rgb[np.any(flag_mask_rgb != [0, 0, 0], axis=-1)] = orange_color
|
| 144 |
+
|
| 145 |
+
plant_mask_rgb = cv2.cvtColor(plant_mask, cv2.COLOR_GRAY2RGB)
|
| 146 |
+
mask_plant_plot_rgb = cv2.cvtColor(mask_plant_plot, cv2.COLOR_GRAY2RGB)
|
| 147 |
+
bright_green_color = [0, 255, 0]
|
| 148 |
+
plant_mask_rgb[np.any(plant_mask_rgb != [0, 0, 0], axis=-1)] = bright_green_color
|
| 149 |
+
mask_plant_plot_rgb[np.any(mask_plant_plot_rgb != [0, 0, 0], axis=-1)] = bright_green_color
|
| 150 |
+
|
| 151 |
+
# Warp the images
|
| 152 |
+
plant_rgb_warp = warp_image(plant_rgb, centroids)
|
| 153 |
+
plant_mask_warp = warp_image(mask_plant_plot_rgb, centroids)
|
| 154 |
+
|
| 155 |
+
return flag_mask_rgb, plant_mask_rgb, mask_plant_plot_rgb, plant_rgb, plot_rgb, plant_rgb_warp, plant_mask_warp, plant_mask, mask_plant_plot, black_pixels_in_quad
|
| 156 |
+
|
| 157 |
+
def calculate_coverage(mask_plant_plot, plant_mask_warp, black_pixels_in_quad):
|
| 158 |
+
# Calculate the percentage of white pixels for mask_plant_plot
|
| 159 |
+
white_pixels_plot = np.sum(mask_plant_plot > 0)
|
| 160 |
+
total_pixels_plot = mask_plant_plot.size
|
| 161 |
+
plot_coverage = (white_pixels_plot / black_pixels_in_quad) * 100
|
| 162 |
+
|
| 163 |
+
# Convert plant_mask_warp to grayscale
|
| 164 |
+
plant_mask_warp_gray = cv2.cvtColor(plant_mask_warp, cv2.COLOR_BGR2GRAY)
|
| 165 |
+
|
| 166 |
+
# Calculate the percentage of white pixels for plant_mask_warp
|
| 167 |
+
white_pixels_warp = np.sum(plant_mask_warp_gray > 0)
|
| 168 |
+
total_pixels_warp = plant_mask_warp_gray.size
|
| 169 |
+
warp_coverage = (white_pixels_warp / total_pixels_warp) * 100
|
| 170 |
+
|
| 171 |
+
# Calculate the area in cm^2 of the mask_plant_plot
|
| 172 |
+
# Given that the real-life size of the square is 2 square meters or 20000 cm^2
|
| 173 |
+
plot_area_cm2 = (white_pixels_warp / total_pixels_warp) * 20000
|
| 174 |
+
|
| 175 |
+
return round(plot_coverage,2), round(warp_coverage,2), round(plot_area_cm2,2)
|
| 176 |
+
|
| 177 |
+
def get_color_parameters():
|
| 178 |
+
# Color pickers for hue component
|
| 179 |
+
FL, FL_S, FL_SS = st.columns([2,4,4])
|
| 180 |
+
with FL:
|
| 181 |
+
flag_lower_hex = st.color_picker("Flag Color Lower Bound Hue", "#33211f")
|
| 182 |
+
with FL_S:
|
| 183 |
+
flag_lower_sat = st.slider("Flag Lower Bound Saturation", 0, 255, 120)
|
| 184 |
+
with FL_SS:
|
| 185 |
+
flag_lower_val = st.slider("Flag Lower Bound Value", 0, 255, 150)
|
| 186 |
+
|
| 187 |
+
FU, FU_S, FU_SS = st.columns([2,4,4])
|
| 188 |
+
with FU:
|
| 189 |
+
flag_upper_hex = st.color_picker("Flag Color Upper Bound Hue", "#ff7700")
|
| 190 |
+
with FU_S:
|
| 191 |
+
flag_upper_sat = st.slider("Flag Upper Bound Saturation", 0, 255, 255)
|
| 192 |
+
with FU_SS:
|
| 193 |
+
flag_upper_val = st.slider("Flag Upper Bound Value", 0, 255, 255)
|
| 194 |
+
|
| 195 |
+
PL, PL_S, PL_SS = st.columns([2,4,4])
|
| 196 |
+
with PL:
|
| 197 |
+
plant_lower_hex = st.color_picker("Plant Color Lower Bound Hue", "#504F49")
|
| 198 |
+
with PL_S:
|
| 199 |
+
plant_lower_sat = st.slider("Plant Lower Bound Saturation", 0, 255, 30)
|
| 200 |
+
with PL_SS:
|
| 201 |
+
plant_lower_val = st.slider("Plant Lower Bound Value", 0, 255, 30)
|
| 202 |
+
|
| 203 |
+
PU, PU_S, PU_SS = st.columns([2,4,4])
|
| 204 |
+
with PU:
|
| 205 |
+
plant_upper_hex = st.color_picker("Plant Color Upper Bound Hue", "#00CFFF")
|
| 206 |
+
with PU_S:
|
| 207 |
+
plant_upper_sat = st.slider("Plant Upper Bound Saturation", 0, 255, 255)
|
| 208 |
+
with PU_SS:
|
| 209 |
+
plant_upper_val = st.slider("Plant Upper Bound Value", 0, 255, 255)
|
| 210 |
+
|
| 211 |
+
# Get HSV bounds using the modified function
|
| 212 |
+
flag_lower_bound = hex_to_hsv_bounds(flag_lower_hex, flag_lower_sat, flag_lower_val)
|
| 213 |
+
flag_upper_bound = hex_to_hsv_bounds(flag_upper_hex, flag_upper_sat, flag_upper_val)
|
| 214 |
+
plant_lower_bound = hex_to_hsv_bounds(plant_lower_hex, plant_lower_sat, plant_lower_val)
|
| 215 |
+
plant_upper_bound = hex_to_hsv_bounds(plant_upper_hex, plant_upper_sat, plant_upper_val)
|
| 216 |
+
|
| 217 |
+
return flag_lower_bound, flag_upper_bound, plant_lower_bound, plant_upper_bound
|
| 218 |
+
|
| 219 |
+
def save_img(directory, base_name, mask):
|
| 220 |
+
mask_name = os.path.join(directory, os.path.basename(base_name))
|
| 221 |
+
cv2.imwrite(mask_name, mask)
|
| 222 |
+
|
| 223 |
+
def main():
|
| 224 |
+
|
| 225 |
+
_, R_coverage, R_plot_area_cm2, R_save = st.columns([5,2,2,2])
|
| 226 |
+
img_gallery, img_main, img_seg, img_green, img_warp = st.columns([1,4,2,2,2])
|
| 227 |
+
|
| 228 |
+
dir_input = st.text_input("Input directory for images:", value="D:\Dropbox\GreenSight\demo")
|
| 229 |
+
dir_output = st.text_input("Output directory:", value="D:\Dropbox\GreenSight\demo_out")
|
| 230 |
+
|
| 231 |
+
directory_manager = DirectoryManager(dir_output)
|
| 232 |
+
directory_manager.create_directories()
|
| 233 |
+
|
| 234 |
+
run_name = st.text_input("Run name:", value="test")
|
| 235 |
+
file_name = os.path.join(directory_manager.data, f"{run_name}.csv")
|
| 236 |
+
headers = ['image',"plant_coverage_uncorrected_percen", "plant_coverage_corrected_percent", "plant_area_corrected_cm2"]
|
| 237 |
+
file_exists = os.path.isfile(file_name)
|
| 238 |
+
|
| 239 |
+
if 'input_list' not in st.session_state:
|
| 240 |
+
input_images = [os.path.join(dir_input, fname) for fname in os.listdir(dir_input) if fname.endswith(('.jpg', '.jpeg', '.png'))]
|
| 241 |
+
st.session_state.input_list = input_images
|
| 242 |
+
|
| 243 |
+
if os.path.exists(dir_input):
|
| 244 |
+
|
| 245 |
+
if len(st.session_state.input_list) == 0 or st.session_state.input_list is None:
|
| 246 |
+
st.balloons()
|
| 247 |
+
else:
|
| 248 |
+
with img_gallery:
|
| 249 |
+
selected_img = image_select("Select an image", st.session_state.input_list, use_container_width=False)
|
| 250 |
+
base_name = os.path.basename(selected_img)
|
| 251 |
+
|
| 252 |
+
if selected_img:
|
| 253 |
+
|
| 254 |
+
selected_img_view = Image.open(selected_img)
|
| 255 |
+
with img_main:
|
| 256 |
+
st.image(selected_img_view, caption="Selected Image", use_column_width='auto')
|
| 257 |
+
|
| 258 |
+
flag_lower_bound, flag_upper_bound, plant_lower_bound, plant_upper_bound = get_color_parameters()
|
| 259 |
+
|
| 260 |
+
flag_mask, plant_mask, mask_plant_plot, plant_rgb, plot_rgb, plant_rgb_warp, plant_mask_warp, plant_mask_bi, mask_plant_plot_bi, black_pixels_in_quad = process_image(selected_img, flag_lower_bound, flag_upper_bound, plant_lower_bound, plant_upper_bound)
|
| 261 |
+
|
| 262 |
+
if plant_mask_warp is not None:
|
| 263 |
+
plot_coverage, warp_coverage, plot_area_cm2 = calculate_coverage(mask_plant_plot_bi, plant_mask_warp, black_pixels_in_quad)
|
| 264 |
+
|
| 265 |
+
with R_coverage:
|
| 266 |
+
st.markdown(f"Uncorrected Plant Coverage: {plot_coverage}%")
|
| 267 |
+
with R_plot_area_cm2:
|
| 268 |
+
st.markdown(f"Corrected Plant Coverage: {warp_coverage}%")
|
| 269 |
+
st.markdown(f"Corrected Plant Area: {plot_area_cm2}cm2")
|
| 270 |
+
|
| 271 |
+
# Display masks in galleries
|
| 272 |
+
with img_seg:
|
| 273 |
+
st.image(plant_mask, caption="Plant Mask", use_column_width=True)
|
| 274 |
+
st.image(flag_mask, caption="Flag Mask", use_column_width=True)
|
| 275 |
+
with img_green:
|
| 276 |
+
st.image(mask_plant_plot, caption="Plant Mask Inside Plot", use_column_width=True)
|
| 277 |
+
st.image(plant_rgb, caption="Plant Material", use_column_width=True)
|
| 278 |
+
with img_warp:
|
| 279 |
+
st.image(plot_rgb, caption="Plant Material Inside Plot", use_column_width=True)
|
| 280 |
+
st.image(plant_rgb_warp, caption="Plant Mask Inside Plot Warped to Square", use_column_width=True)
|
| 281 |
+
# st.image(plot_rgb_warp, caption="Flag Mask", use_column_width=True)
|
| 282 |
+
with R_save:
|
| 283 |
+
if st.button('Save'):
|
| 284 |
+
# Save the masks to their respective folders
|
| 285 |
+
save_img(directory_manager.mask_flag, base_name, flag_mask)
|
| 286 |
+
save_img(directory_manager.mask_plant, base_name, plant_mask)
|
| 287 |
+
save_img(directory_manager.mask_plant_plot, base_name, mask_plant_plot)
|
| 288 |
+
save_img(directory_manager.plant_rgb, base_name, plant_rgb)
|
| 289 |
+
save_img(directory_manager.plot_rgb, base_name, plot_rgb)
|
| 290 |
+
save_img(directory_manager.plant_rgb_warp, base_name, plant_rgb_warp)
|
| 291 |
+
save_img(directory_manager.plant_mask_warp, base_name, plant_mask_warp)
|
| 292 |
+
|
| 293 |
+
# Append the data to the CSV file
|
| 294 |
+
with open(file_name, mode='a', newline='') as file:
|
| 295 |
+
writer = csv.writer(file)
|
| 296 |
+
|
| 297 |
+
# If the file doesn't exist, write the headers
|
| 298 |
+
if not file_exists:
|
| 299 |
+
writer.writerow(headers)
|
| 300 |
+
|
| 301 |
+
# Write the data
|
| 302 |
+
writer.writerow([f"{base_name}",f"{plot_coverage}", f"{warp_coverage}", f"{plot_area_cm2}"])
|
| 303 |
+
|
| 304 |
+
# Remove processed image from the list
|
| 305 |
+
st.session_state.input_list.remove(selected_img)
|
| 306 |
+
st.rerun()
|
| 307 |
+
else:
|
| 308 |
+
with R_save:
|
| 309 |
+
if st.button('Save as Failure'):
|
| 310 |
+
# Append the data to the CSV file
|
| 311 |
+
with open(file_name, mode='a', newline='') as file:
|
| 312 |
+
writer = csv.writer(file)
|
| 313 |
+
|
| 314 |
+
# If the file doesn't exist, write the headers
|
| 315 |
+
if not file_exists:
|
| 316 |
+
writer.writerow(headers)
|
| 317 |
+
|
| 318 |
+
# Write the data
|
| 319 |
+
writer.writerow([f"{base_name}",f"NA", f"NA", f"NA"])
|
| 320 |
+
|
| 321 |
+
# Remove processed image from the list
|
| 322 |
+
st.session_state.input_list.remove(selected_img)
|
| 323 |
+
st.rerun()
|
| 324 |
+
|
| 325 |
+
st.set_page_config(layout="wide", page_title='GreenSight')
|
| 326 |
+
st.title("GreenSight")
|
| 327 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy
|
| 2 |
+
matplotlib
|
| 3 |
+
streamlit
|
| 4 |
+
streamlit_image_select
|
| 5 |
+
opencv-python
|
| 6 |
+
Pillow
|