Spaces:
Build error
Build error
""" | |
The data process is base on https://www.kaggle.com/code/sslp23/predicting-fifa-2022-world-cup-with-ml | |
""" | |
import os.path | |
import pandas as pd | |
from sklearn.model_selection import train_test_split | |
from configs.config import cfg | |
from configs.constants import DATA_ROOT | |
def result_finder(home, away): | |
""" | |
Encode the data | |
:param home: | |
:param away: | |
:return: | |
""" | |
if home > away: | |
return pd.Series([0, 3, 0]) | |
if home < away: | |
return pd.Series([1, 0, 3]) | |
else: | |
return pd.Series([2, 1, 1]) | |
def create_dataset(df: pd.DataFrame): | |
""" | |
Create train, test dataset | |
:param df: | |
:return: | |
""" | |
x_, y = df.iloc[:, 3:], df[["target"]] | |
x_train, x_test, y_train, y_test = train_test_split( | |
x_, y, test_size=0.22, random_state=100) | |
return x_train, x_test, y_train, y_test | |
def data_preparing(): | |
""" | |
Data preparing | |
:return: | |
""" | |
try: | |
df = pd.read_csv(cfg.data.result_url) | |
except Exception as e: | |
print(e) | |
df = pd.read_csv(os.path.join(DATA_ROOT, cfg.data.result_file)) | |
df["date"] = pd.to_datetime(df["date"]) | |
df.dropna(inplace=True) | |
df = df[(df["date"] >= cfg.day_get_result)].reset_index(drop=True) | |
# RANK data prepare | |
rank = pd.read_csv(os.path.join(DATA_ROOT, cfg.data.rank_file)) | |
rank["rank_date"] = pd.to_datetime(rank["rank_date"]) | |
rank = rank[(rank["rank_date"] >= cfg.day_get_rank)].reset_index(drop=True) | |
rank["country_full"] = rank["country_full"].str.replace("IR Iran", "Iran").str.replace("Korea Republic", | |
"South Korea").str.replace( | |
"USA", "United States") | |
# The merge is made in order to get a dataset FIFA games and its rankings. | |
rank = rank.set_index(['rank_date']).groupby(['country_full'], group_keys=False).resample('D').first().fillna( | |
method='ffill').reset_index() | |
df_wc_ranked = df.merge( | |
rank[["country_full", "total_points", "previous_points", "rank", "rank_change", "rank_date"]], | |
left_on=["date", "home_team"], right_on=["rank_date", "country_full"]).drop(["rank_date", "country_full"], | |
axis=1) | |
df_wc_ranked = df_wc_ranked.merge( | |
rank[["country_full", "total_points", "previous_points", "rank", "rank_change", "rank_date"]], | |
left_on=["date", "away_team"], right_on=["rank_date", "country_full"], suffixes=("_home", "_away")).drop( | |
["rank_date", "country_full"], axis=1) | |
# Featuring | |
df = df_wc_ranked | |
df[["result", "home_team_points", "away_team_points"]] = df.apply( | |
lambda x: result_finder(x["home_score"], x["away_score"]), axis=1) | |
# we create columns that will help in the creation of the features: ranking difference, | |
# points won at the game vs. team faced rank, and goals difference in the game. | |
# All features that are not differences should be created for the two teams (away and home). | |
df["rank_dif"] = df["rank_home"] - df["rank_away"] | |
df["sg"] = df["home_score"] - df["away_score"] | |
df["points_home_by_rank"] = df["home_team_points"] / df["rank_away"] | |
df["points_away_by_rank"] = df["away_team_points"] / df["rank_home"] | |
# In order to create the features, I'll separate the dataset in home team's and away team's dataset, | |
# unify them and calculate the past game values. | |
# After that, I'll separate again and merge them, retrieving the original dataset. | |
# This process optimizes the creation of the features. | |
home_team = df[["date", "home_team", "home_score", "away_score", "rank_home", "rank_away", "rank_change_home", | |
"total_points_home", "result", "rank_dif", "points_home_by_rank", "home_team_points"]] | |
away_team = df[["date", "away_team", "away_score", "home_score", "rank_away", "rank_home", "rank_change_away", | |
"total_points_away", "result", "rank_dif", "points_away_by_rank", "away_team_points"]] | |
home_team.columns = [h.replace("home_", "").replace("_home", "").replace("away_", "suf_").replace("_away", "_suf") | |
for h in home_team.columns] | |
away_team.columns = [a.replace("away_", "").replace("_away", "").replace("home_", "suf_").replace("_home", "_suf") | |
for a in away_team.columns] | |
team_stats = home_team.append(away_team) | |
stats_val = [] | |
for index, row in team_stats.iterrows(): | |
team = row["team"] | |
date = row["date"] | |
past_games = team_stats.loc[ | |
(team_stats["team"] == team) & (team_stats["date"] < date) | |
].sort_values(by=['date'], ascending=False) | |
last5 = past_games.head(5) | |
goals = past_games["score"].mean() | |
goals_l5 = last5["score"].mean() | |
goals_suf = past_games["suf_score"].mean() | |
goals_suf_l5 = last5["suf_score"].mean() | |
rank = past_games["rank_suf"].mean() | |
rank_l5 = last5["rank_suf"].mean() | |
if len(last5) > 0: | |
points = past_games["total_points"].values[0] - past_games["total_points"].values[ | |
-1] # amount of points earned | |
points_l5 = last5["total_points"].values[0] - last5["total_points"].values[-1] | |
else: | |
points = 0 | |
points_l5 = 0 | |
gp = past_games["team_points"].mean() | |
gp_l5 = last5["team_points"].mean() | |
gp_rank = past_games["points_by_rank"].mean() | |
gp_rank_l5 = last5["points_by_rank"].mean() | |
stats_val.append( | |
[goals, goals_l5, goals_suf, goals_suf_l5, rank, rank_l5, points, points_l5, gp, gp_l5, gp_rank, | |
gp_rank_l5]) | |
stats_cols = ["goals_mean", "goals_mean_l5", "goals_suf_mean", "goals_suf_mean_l5", "rank_mean", "rank_mean_l5", | |
"points_mean", "points_mean_l5", "game_points_mean", "game_points_mean_l5", | |
"game_points_rank_mean", "game_points_rank_mean_l5"] | |
stats_df = pd.DataFrame(stats_val, columns=stats_cols) | |
full_df = pd.concat([team_stats.reset_index(drop=True), stats_df], axis=1, ignore_index=False) | |
home_team_stats = full_df.iloc[:int(full_df.shape[0] / 2), :] | |
away_team_stats = full_df.iloc[int(full_df.shape[0] / 2):, :] | |
home_team_stats = home_team_stats[home_team_stats.columns[-12:]] | |
away_team_stats = away_team_stats[away_team_stats.columns[-12:]] | |
home_team_stats.columns = ['home_' + str(col) for col in home_team_stats.columns] | |
away_team_stats.columns = ['away_' + str(col) for col in away_team_stats.columns] | |
# In order to unify the database, is needed to add home and away suffix for each column. | |
# After that, the data is ready to be merged. | |
match_stats = pd.concat([home_team_stats, away_team_stats.reset_index(drop=True)], axis=1, ignore_index=False) | |
full_df = pd.concat([df, match_stats.reset_index(drop=True)], axis=1, ignore_index=False) | |
# Drop friendly game | |
full_df["is_friendly"] = full_df["tournament"].apply(lambda x: find_friendly(x)) | |
full_df = pd.get_dummies(full_df, columns=["is_friendly"]) | |
base_df = full_df[ | |
["date", "home_team", "away_team", "rank_home", "rank_away", "home_score", "away_score", "result", | |
"rank_dif", "rank_change_home", "rank_change_away", 'home_goals_mean', | |
'home_goals_mean_l5', 'home_goals_suf_mean', 'home_goals_suf_mean_l5', | |
'home_rank_mean', 'home_rank_mean_l5', 'home_points_mean', | |
'home_points_mean_l5', 'away_goals_mean', 'away_goals_mean_l5', | |
'away_goals_suf_mean', 'away_goals_suf_mean_l5', 'away_rank_mean', | |
'away_rank_mean_l5', 'away_points_mean', 'away_points_mean_l5', 'home_game_points_mean', | |
'home_game_points_mean_l5', | |
'home_game_points_rank_mean', 'home_game_points_rank_mean_l5', 'away_game_points_mean', | |
'away_game_points_mean_l5', 'away_game_points_rank_mean', | |
'away_game_points_rank_mean_l5', | |
'is_friendly_0', 'is_friendly_1']] | |
df = base_df.dropna() | |
df["target"] = df["result"].apply(lambda x: no_draw(x)) | |
model_db = create_db(df) | |
return df, model_db | |
def find_friendly(x): | |
""" | |
Return whether the match is friendly match or not. | |
:param x: | |
:return: | |
""" | |
if x == "Friendly": | |
return 1 | |
else: | |
return 0 | |
def create_db(df): | |
""" | |
:param df: | |
:return: | |
""" | |
columns = ["home_team", "away_team", "target", "rank_dif", "home_goals_mean", | |
"home_rank_mean", "away_goals_mean", "away_rank_mean", "home_rank_mean_l5", "away_rank_mean_l5", | |
"home_goals_suf_mean", "away_goals_suf_mean", "home_goals_mean_l5", "away_goals_mean_l5", | |
"home_goals_suf_mean_l5", "away_goals_suf_mean_l5", "home_game_points_rank_mean", | |
"home_game_points_rank_mean_l5", "away_game_points_rank_mean", "away_game_points_rank_mean_l5", | |
"is_friendly_0", "is_friendly_1"] | |
base = df.loc[:, columns] | |
base.loc[:, "goals_dif"] = base["home_goals_mean"] - base["away_goals_mean"] | |
base.loc[:, "goals_dif_l5"] = base["home_goals_mean_l5"] - base["away_goals_mean_l5"] | |
base.loc[:, "goals_suf_dif"] = base["home_goals_suf_mean"] - base["away_goals_suf_mean"] | |
base.loc[:, "goals_suf_dif_l5"] = base["home_goals_suf_mean_l5"] - base["away_goals_suf_mean_l5"] | |
base.loc[:, "goals_per_ranking_dif"] = (base["home_goals_mean"] / base["home_rank_mean"]) - ( | |
base["away_goals_mean"] / base["away_rank_mean"]) | |
base.loc[:, "dif_rank_agst"] = base["home_rank_mean"] - base["away_rank_mean"] | |
base.loc[:, "dif_rank_agst_l5"] = base["home_rank_mean_l5"] - base["away_rank_mean_l5"] | |
base.loc[:, "dif_points_rank"] = base["home_game_points_rank_mean"] - base["away_game_points_rank_mean"] | |
base.loc[:, "dif_points_rank_l5"] = base["home_game_points_rank_mean_l5"] - base[ | |
"away_game_points_rank_mean_l5"] | |
model_df = base[ | |
["home_team", "away_team", "target", "rank_dif", "goals_dif", "goals_dif_l5", | |
"goals_suf_dif", "goals_suf_dif_l5", "goals_per_ranking_dif", "dif_rank_agst", "dif_rank_agst_l5", | |
"dif_points_rank", "dif_points_rank_l5", "is_friendly_0", "is_friendly_1"]] | |
return model_df | |
def no_draw(x): | |
""" | |
:param x: | |
:return: | |
""" | |
if x == 2: | |
return 1 | |
else: | |
return x | |