phitran commited on
Commit
cb04bf5
·
verified ·
1 Parent(s): a0a53f9

Initial commit

Browse files
Files changed (3) hide show
  1. app.py +91 -0
  2. requirements.txt +5 -0
  3. yolov8n.pt +3 -0
app.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import cv2
3
+ import numpy as np
4
+ from PIL import Image
5
+ from ultralytics import YOLO # YOLOv8 from Ultralytics
6
+
7
+ # Load YOLOv8 model (pre-trained on COCO dataset)
8
+ model = YOLO("yolov8n.pt") # Using the "nano" model (fast & lightweight)
9
+
10
+ #apply smoothing using OpenCV's medianBlur
11
+ def smooth_image(image):
12
+ image = np.array(image) # Convert PIL image to NumPy array
13
+ smoothed = cv2.medianBlur(image, 15) # Apply median blur with kernel size 5
14
+ return Image.fromarray(smoothed) # Convert back to PIL image
15
+
16
+ #apply Erosion Morphological Transformation
17
+ def erode_image(image):
18
+ image = np.array(image)
19
+ kernel = np.ones((3, 3), np.uint8) # Define a 3x3 kernel
20
+ eroded = cv2.erode(image, kernel, iterations=1) # Apply erosion
21
+ return Image.fromarray(eroded) # Convert back to PIL image
22
+
23
+ #apply image segmentation using Otsu's Thresholding
24
+ def segment_image(image):
25
+ image = np.array(image)
26
+ gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) # Convert to grayscale
27
+ _, segmented = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # Apply Otsu's thresholding
28
+ return Image.fromarray(segmented) # Convert back to PIL image
29
+
30
+ #apply Fourier Transform and display magnitude spectrum
31
+ def fourier_transform(image):
32
+ image = np.array(image)
33
+ gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) # Convert to grayscale
34
+ dft = np.fft.fft2(gray) # Compute Fourier Transform
35
+ dft_shift = np.fft.fftshift(dft) # Shift zero frequency to center
36
+ magnitude_spectrum = 20 * np.log(np.abs(dft_shift) + 1) # Compute magnitude spectrum
37
+ magnitude_spectrum = np.uint8(255 * (magnitude_spectrum / np.max(magnitude_spectrum))) # Normalize for display
38
+ return Image.fromarray(magnitude_spectrum)
39
+
40
+ def detect_objects(image):
41
+ image = np.array(image) # Convert PIL image to NumPy array
42
+
43
+ # Perform object detection
44
+ results = model(image)
45
+
46
+ # Process detections
47
+ for result in results:
48
+ boxes = result.boxes.xyxy # Bounding boxes (x1, y1, x2, y2)
49
+ confidences = result.boxes.conf # Confidence scores
50
+ class_ids = result.boxes.cls.int().tolist() # Class labels
51
+
52
+ for box, conf, class_id in zip(boxes, confidences, class_ids):
53
+ x1, y1, x2, y2 = map(int, box.tolist())
54
+ label = f"{model.names[class_id]} ({conf:.2f})"
55
+
56
+ # Draw bounding box & label
57
+ cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
58
+ cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
59
+
60
+ return Image.fromarray(image) # Convert back to PIL Image for Gradio
61
+
62
+
63
+
64
+ def create_interface():
65
+ with gr.Blocks() as demo:
66
+ with gr.Row():
67
+ with gr.Column():
68
+ image_input = gr.Image(label="Upload Image", type="pil")
69
+ with gr.Column():
70
+ output_image = gr.Image(label="Processed Image", type="pil")
71
+
72
+ with gr.Row():
73
+ smoothing_button = gr.Button("Smoothing/ Blurring")
74
+ morphological_transform_button = gr.Button("Morphological Transformations")
75
+ fourier_transform_button = gr.Button("Fourier Transform")
76
+ segmentation_button = gr.Button("Segmentation")
77
+ object_recognition_button = gr.Button("Object Recognition (YOLO)")
78
+
79
+ # Link buttons to their respective functions
80
+ smoothing_button.click(smooth_image, inputs=image_input, outputs=output_image)
81
+ morphological_transform_button.click(erode_image, inputs=image_input, outputs=output_image)
82
+ fourier_transform_button.click(fourier_transform, inputs=image_input, outputs=output_image)
83
+ segmentation_button.click(segment_image, inputs=image_input, outputs=output_image)
84
+ object_recognition_button.click(detect_objects, inputs=image_input, outputs=output_image)
85
+
86
+ return demo
87
+
88
+
89
+ # Launch the Gradio app
90
+ app = create_interface()
91
+ app.launch()
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ gradio==5.23.3
2
+ numpy==2.2.4
3
+ opencv_python==4.11.0.86
4
+ Pillow==11.1.0
5
+ ultralytics==8.3.100
yolov8n.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f59b3d833e2ff32e194b5bb8e08d211dc7c5bdf144b90d2c8412c47ccfc83b36
3
+ size 6549796