import gradio as gr import cv2 import numpy as np import mediapipe as mp import os example_path = os.path.join(os.path.dirname(__file__), 'example') garm_list = os.listdir(os.path.join(example_path, "cloth")) garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list] human_list = os.listdir(os.path.join(example_path, "cloth")) human_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list] # Initialize MediaPipe Pose mp_pose = mp.solutions.pose pose = mp_pose.Pose(static_image_mode=True) mp_drawing = mp.solutions.drawing_utils mp_pose_landmark = mp_pose.PoseLandmark def align_clothing(body_img, clothing_img): image_rgb = cv2.cvtColor(body_img, cv2.COLOR_BGR2RGB) result = pose.process(image_rgb) output = body_img.copy() keypoints = {} if result.pose_landmarks: height, width, _ = output.shape # Extract body keypoints points = { 'left_shoulder': mp_pose_landmark.LEFT_SHOULDER, 'right_shoulder': mp_pose_landmark.RIGHT_SHOULDER, 'left_hip': mp_pose_landmark.LEFT_HIP } for name, idx in points.items(): lm = result.pose_landmarks.landmark[idx] keypoints[name] = (int(lm.x * width), int(lm.y * height)) # Draw for debug for name, (x, y) in keypoints.items(): cv2.circle(output, (x, y), 5, (0, 255, 0), -1) cv2.putText(output, name, (x + 5, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) # Affine Transform if all(k in keypoints for k in ['left_shoulder', 'right_shoulder', 'left_hip']): src_tri = np.array([ [0, 0], [clothing_img.shape[1], 0], [0, clothing_img.shape[0]] ], dtype=np.float32) dst_tri = np.array([ keypoints['left_shoulder'], keypoints['right_shoulder'], keypoints['left_hip'] ], dtype=np.float32) # Compute warp matrix and apply it warp_mat = cv2.getAffineTransform(src_tri, dst_tri) warped_clothing = cv2.warpAffine(clothing_img, warp_mat, (width, height), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_TRANSPARENT) # Blend clothing over body if clothing_img.shape[2] == 4: # has alpha alpha = warped_clothing[:, :, 3] / 255.0 for c in range(3): output[:, :, c] = (1 - alpha) * output[:, :, c] + alpha * warped_clothing[:, :, c] else: output = cv2.addWeighted(output, 0.8, warped_clothing, 0.5, 0) return output image_blocks = gr.Blocks(theme="Nymbo/Alyx_Theme").queue() with image_blocks as demo: gr.HTML("

Virtual Try-On

") gr.HTML("

Upload an image of a person and an image of a garment ✨

") with gr.Row(): with gr.Column(): imgs = gr.Image(type="pil", label='Human', interactive=True) example = gr.Examples( inputs=imgs, examples_per_page=10, examples=human_list_path ) with gr.Column(): garm_img = gr.Image(label="Garment", type="pil",interactive=True) example = gr.Examples( inputs=garm_img, examples_per_page=8, examples=garm_list_path) with gr.Column(): image_out = gr.Image(label="Processed image", type="pil") with gr.Row(): try_button = gr.Button(value="Try-on") image_blocks.launch()