Spaces:
Running
Running
implement UI and basic functions
Browse files
app.py
CHANGED
@@ -5,11 +5,12 @@ import mediapipe as mp
|
|
5 |
import os
|
6 |
|
7 |
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
|
|
8 |
garm_list = os.listdir(os.path.join(example_path, "cloth"))
|
9 |
garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list]
|
10 |
|
11 |
-
human_list = os.listdir(os.path.join(example_path, "
|
12 |
-
human_list_path = [os.path.join(example_path, "
|
13 |
|
14 |
# Initialize MediaPipe Pose
|
15 |
mp_pose = mp.solutions.pose
|
@@ -18,76 +19,65 @@ mp_drawing = mp.solutions.drawing_utils
|
|
18 |
mp_pose_landmark = mp_pose.PoseLandmark
|
19 |
|
20 |
|
21 |
-
def
|
22 |
-
|
|
|
|
|
|
|
23 |
result = pose.process(image_rgb)
|
24 |
-
|
25 |
keypoints = {}
|
26 |
|
27 |
if result.pose_landmarks:
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
# Extract
|
31 |
-
|
32 |
'left_shoulder': mp_pose_landmark.LEFT_SHOULDER,
|
33 |
'right_shoulder': mp_pose_landmark.RIGHT_SHOULDER,
|
34 |
-
'left_hip': mp_pose_landmark.LEFT_HIP
|
|
|
35 |
}
|
36 |
|
37 |
-
for name,
|
38 |
-
lm = result.pose_landmarks.landmark[
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
cv2.circle(
|
44 |
-
cv2.putText(
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
], dtype=np.float32)
|
59 |
-
|
60 |
-
# Compute warp matrix and apply it
|
61 |
-
warp_mat = cv2.getAffineTransform(src_tri, dst_tri)
|
62 |
-
warped_clothing = cv2.warpAffine(clothing_img, warp_mat, (width, height), flags=cv2.INTER_LINEAR,
|
63 |
-
borderMode=cv2.BORDER_TRANSPARENT)
|
64 |
-
|
65 |
-
# Blend clothing over body
|
66 |
-
if clothing_img.shape[2] == 4: # has alpha
|
67 |
-
alpha = warped_clothing[:, :, 3] / 255.0
|
68 |
-
for c in range(3):
|
69 |
-
output[:, :, c] = (1 - alpha) * output[:, :, c] + alpha * warped_clothing[:, :, c]
|
70 |
-
else:
|
71 |
-
output = cv2.addWeighted(output, 0.8, warped_clothing, 0.5, 0)
|
72 |
-
|
73 |
-
return output
|
74 |
-
|
75 |
-
|
76 |
-
image_blocks = gr.Blocks(theme="Nymbo/Alyx_Theme").queue()
|
77 |
with image_blocks as demo:
|
78 |
gr.HTML("<center><h1>Virtual Try-On</h1></center>")
|
79 |
gr.HTML("<center><p>Upload an image of a person and an image of a garment ✨</p></center>")
|
80 |
with gr.Row():
|
81 |
with gr.Column():
|
82 |
-
|
83 |
example = gr.Examples(
|
84 |
-
inputs=
|
85 |
examples_per_page=10,
|
86 |
examples=human_list_path
|
87 |
)
|
88 |
|
89 |
with gr.Column():
|
90 |
-
garm_img = gr.Image(label="Garment", type="pil",interactive=True)
|
91 |
example = gr.Examples(
|
92 |
inputs=garm_img,
|
93 |
examples_per_page=8,
|
@@ -96,5 +86,9 @@ with image_blocks as demo:
|
|
96 |
image_out = gr.Image(label="Processed image", type="pil")
|
97 |
|
98 |
with gr.Row():
|
99 |
-
try_button = gr.Button(value="Try-on")
|
|
|
|
|
|
|
|
|
100 |
image_blocks.launch()
|
|
|
5 |
import os
|
6 |
|
7 |
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
8 |
+
|
9 |
garm_list = os.listdir(os.path.join(example_path, "cloth"))
|
10 |
garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list]
|
11 |
|
12 |
+
human_list = os.listdir(os.path.join(example_path, "human"))
|
13 |
+
human_list_path = [os.path.join(example_path, "human", human) for human in human_list]
|
14 |
|
15 |
# Initialize MediaPipe Pose
|
16 |
mp_pose = mp.solutions.pose
|
|
|
19 |
mp_pose_landmark = mp_pose.PoseLandmark
|
20 |
|
21 |
|
22 |
+
def detect_pose(image):
|
23 |
+
# Convert to RGB
|
24 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
25 |
+
|
26 |
+
# Run pose detection
|
27 |
result = pose.process(image_rgb)
|
28 |
+
|
29 |
keypoints = {}
|
30 |
|
31 |
if result.pose_landmarks:
|
32 |
+
# Draw landmarks on image
|
33 |
+
mp_drawing.draw_landmarks(image, result.pose_landmarks, mp_pose.POSE_CONNECTIONS)
|
34 |
+
|
35 |
+
# Get image dimensions
|
36 |
+
height, width, _ = image.shape
|
37 |
|
38 |
+
# Extract specific landmarks
|
39 |
+
landmark_indices = {
|
40 |
'left_shoulder': mp_pose_landmark.LEFT_SHOULDER,
|
41 |
'right_shoulder': mp_pose_landmark.RIGHT_SHOULDER,
|
42 |
+
'left_hip': mp_pose_landmark.LEFT_HIP,
|
43 |
+
'right_hip': mp_pose_landmark.RIGHT_HIP
|
44 |
}
|
45 |
|
46 |
+
for name, index in landmark_indices.items():
|
47 |
+
lm = result.pose_landmarks.landmark[index]
|
48 |
+
x, y = int(lm.x * width), int(lm.y * height)
|
49 |
+
keypoints[name] = (x, y)
|
50 |
+
|
51 |
+
# Draw a circle + label for debug
|
52 |
+
cv2.circle(image, (x, y), 5, (0, 255, 0), -1)
|
53 |
+
cv2.putText(image, name, (x + 5, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
54 |
+
|
55 |
+
return image
|
56 |
+
|
57 |
+
|
58 |
+
def process_image(human_img):
|
59 |
+
# Convert PIL image to NumPy array
|
60 |
+
human_img = np.array(human_img)
|
61 |
+
|
62 |
+
processed_image = detect_pose(human_img)
|
63 |
+
return processed_image
|
64 |
+
|
65 |
+
|
66 |
+
image_blocks = gr.Blocks().queue()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
with image_blocks as demo:
|
68 |
gr.HTML("<center><h1>Virtual Try-On</h1></center>")
|
69 |
gr.HTML("<center><p>Upload an image of a person and an image of a garment ✨</p></center>")
|
70 |
with gr.Row():
|
71 |
with gr.Column():
|
72 |
+
human_img = gr.Image(type="pil", label='Human', interactive=True)
|
73 |
example = gr.Examples(
|
74 |
+
inputs=human_img,
|
75 |
examples_per_page=10,
|
76 |
examples=human_list_path
|
77 |
)
|
78 |
|
79 |
with gr.Column():
|
80 |
+
garm_img = gr.Image(label="Garment", type="pil", interactive=True)
|
81 |
example = gr.Examples(
|
82 |
inputs=garm_img,
|
83 |
examples_per_page=8,
|
|
|
86 |
image_out = gr.Image(label="Processed image", type="pil")
|
87 |
|
88 |
with gr.Row():
|
89 |
+
try_button = gr.Button(value="Try-on", variant='primary')
|
90 |
+
|
91 |
+
# Linking the button to the processing function
|
92 |
+
try_button.click(fn=process_image, inputs=human_img, outputs=image_out)
|
93 |
+
|
94 |
image_blocks.launch()
|