ptmsc
call api to handle tryon
0f7f5eb
import os
import cv2
import gradio as gr
import mediapipe as mp
import numpy as np
from PIL import Image
from gradio_client import Client, handle_file
example_path = os.path.join(os.path.dirname(__file__), 'example')
garm_list = os.listdir(os.path.join(example_path, "cloth"))
garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list]
human_list = os.listdir(os.path.join(example_path, "human"))
human_list_path = [os.path.join(example_path, "human", human) for human in human_list]
# Initialize MediaPipe Pose
mp_pose = mp.solutions.pose
pose = mp_pose.Pose(static_image_mode=True)
mp_drawing = mp.solutions.drawing_utils
mp_pose_landmark = mp_pose.PoseLandmark
def detect_pose(image):
# Convert to RGB
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Run pose detection
result = pose.process(image_rgb)
keypoints = {}
if result.pose_landmarks:
# Draw landmarks on image
mp_drawing.draw_landmarks(image, result.pose_landmarks, mp_pose.POSE_CONNECTIONS)
# Get image dimensions
height, width, _ = image.shape
# Extract specific landmarks
landmark_indices = {
'left_shoulder': mp_pose_landmark.LEFT_SHOULDER,
'right_shoulder': mp_pose_landmark.RIGHT_SHOULDER,
'left_hip': mp_pose_landmark.LEFT_HIP,
'right_hip': mp_pose_landmark.RIGHT_HIP
}
for name, index in landmark_indices.items():
lm = result.pose_landmarks.landmark[index]
x, y = int(lm.x * width), int(lm.y * height)
keypoints[name] = (x, y)
# Draw a circle + label for debug
cv2.circle(image, (x, y), 5, (0, 255, 0), -1)
cv2.putText(image, name, (x + 5, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
return image
def align_clothing(body_img, clothing_img):
image_rgb = cv2.cvtColor(body_img, cv2.COLOR_BGR2RGB)
result = pose.process(image_rgb)
output = body_img.copy()
if result.pose_landmarks:
h, w, _ = output.shape
# Extract key points
def get_point(landmark_id):
lm = result.pose_landmarks.landmark[landmark_id]
return int(lm.x * w), int(lm.y * h)
left_shoulder = get_point(mp_pose_landmark.LEFT_SHOULDER)
right_shoulder = get_point(mp_pose_landmark.RIGHT_SHOULDER)
left_hip = get_point(mp_pose_landmark.LEFT_HIP)
right_hip = get_point(mp_pose_landmark.RIGHT_HIP)
# Destination box (torso region)
dst_pts = np.array([
left_shoulder,
right_shoulder,
right_hip,
left_hip
], dtype=np.float32)
# Source box (clothing image corners)
src_h, src_w = clothing_img.shape[:2]
src_pts = np.array([
[0, 0],
[src_w, 0],
[src_w, src_h],
[0, src_h]
], dtype=np.float32)
# Compute perspective transform and warp
matrix = cv2.getPerspectiveTransform(src_pts, dst_pts)
warped_clothing = cv2.warpPerspective(clothing_img, matrix, (w, h), borderMode=cv2.BORDER_TRANSPARENT)
# Handle transparency
if clothing_img.shape[2] == 4:
alpha = warped_clothing[:, :, 3] / 255.0
for c in range(3):
output[:, :, c] = (1 - alpha) * output[:, :, c] + alpha * warped_clothing[:, :, c]
else:
output = cv2.addWeighted(output, 0.8, warped_clothing, 0.5, 0)
return output
def process_image(human_img_path, garm_img_path):
client = Client("franciszzj/Leffa")
result = client.predict(
src_image_path=handle_file(human_img_path),
ref_image_path=handle_file(garm_img_path),
ref_acceleration=False,
step=30,
scale=2.5,
seed=42,
vt_model_type="viton_hd",
vt_garment_type="upper_body",
vt_repaint=False,
api_name="/leffa_predict_vt"
)
print(result)
generated_image_path = result[0]
print("generated_image_path" + generated_image_path)
generated_image = Image.open(generated_image_path)
return generated_image
image_blocks = gr.Blocks().queue()
with image_blocks as demo:
gr.HTML("<center><h1>Virtual Try-On</h1></center>")
gr.HTML("<center><p>Upload an image of a person and an image of a garment ✨</p></center>")
with gr.Row():
with gr.Column():
human_img = gr.Image(type="filepath", label='Human', interactive=True)
example = gr.Examples(
inputs=human_img,
examples_per_page=10,
examples=human_list_path
)
with gr.Column():
garm_img = gr.Image(label="Garment", type="filepath", interactive=True)
example = gr.Examples(
inputs=garm_img,
examples_per_page=8,
examples=garm_list_path)
with gr.Column():
image_out = gr.Image(label="Processed image", type="pil")
with gr.Row():
try_button = gr.Button(value="Try-on", variant='primary')
# Linking the button to the processing function
try_button.click(fn=process_image, inputs=[human_img, garm_img], outputs=image_out)
image_blocks.launch(show_error=True)