Spaces:
Running
Running
import gradio as gr | |
import cv2 | |
import numpy as np | |
import mediapipe as mp | |
import os | |
example_path = os.path.join(os.path.dirname(__file__), 'example') | |
garm_list = os.listdir(os.path.join(example_path, "cloth")) | |
garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list] | |
human_list = os.listdir(os.path.join(example_path, "cloth")) | |
human_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list] | |
# Initialize MediaPipe Pose | |
mp_pose = mp.solutions.pose | |
pose = mp_pose.Pose(static_image_mode=True) | |
mp_drawing = mp.solutions.drawing_utils | |
mp_pose_landmark = mp_pose.PoseLandmark | |
def align_clothing(body_img, clothing_img): | |
image_rgb = cv2.cvtColor(body_img, cv2.COLOR_BGR2RGB) | |
result = pose.process(image_rgb) | |
output = body_img.copy() | |
keypoints = {} | |
if result.pose_landmarks: | |
height, width, _ = output.shape | |
# Extract body keypoints | |
points = { | |
'left_shoulder': mp_pose_landmark.LEFT_SHOULDER, | |
'right_shoulder': mp_pose_landmark.RIGHT_SHOULDER, | |
'left_hip': mp_pose_landmark.LEFT_HIP | |
} | |
for name, idx in points.items(): | |
lm = result.pose_landmarks.landmark[idx] | |
keypoints[name] = (int(lm.x * width), int(lm.y * height)) | |
# Draw for debug | |
for name, (x, y) in keypoints.items(): | |
cv2.circle(output, (x, y), 5, (0, 255, 0), -1) | |
cv2.putText(output, name, (x + 5, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) | |
# Affine Transform | |
if all(k in keypoints for k in ['left_shoulder', 'right_shoulder', 'left_hip']): | |
src_tri = np.array([ | |
[0, 0], | |
[clothing_img.shape[1], 0], | |
[0, clothing_img.shape[0]] | |
], dtype=np.float32) | |
dst_tri = np.array([ | |
keypoints['left_shoulder'], | |
keypoints['right_shoulder'], | |
keypoints['left_hip'] | |
], dtype=np.float32) | |
# Compute warp matrix and apply it | |
warp_mat = cv2.getAffineTransform(src_tri, dst_tri) | |
warped_clothing = cv2.warpAffine(clothing_img, warp_mat, (width, height), flags=cv2.INTER_LINEAR, | |
borderMode=cv2.BORDER_TRANSPARENT) | |
# Blend clothing over body | |
if clothing_img.shape[2] == 4: # has alpha | |
alpha = warped_clothing[:, :, 3] / 255.0 | |
for c in range(3): | |
output[:, :, c] = (1 - alpha) * output[:, :, c] + alpha * warped_clothing[:, :, c] | |
else: | |
output = cv2.addWeighted(output, 0.8, warped_clothing, 0.5, 0) | |
return output | |
image_blocks = gr.Blocks(theme="Nymbo/Alyx_Theme").queue() | |
with image_blocks as demo: | |
gr.HTML("<center><h1>Virtual Try-On</h1></center>") | |
gr.HTML("<center><p>Upload an image of a person and an image of a garment ✨</p></center>") | |
with gr.Row(): | |
with gr.Column(): | |
imgs = gr.Image(type="pil", label='Human', interactive=True) | |
example = gr.Examples( | |
inputs=imgs, | |
examples_per_page=10, | |
examples=human_list_path | |
) | |
with gr.Column(): | |
garm_img = gr.Image(label="Garment", type="pil",interactive=True) | |
example = gr.Examples( | |
inputs=garm_img, | |
examples_per_page=8, | |
examples=garm_list_path) | |
with gr.Column(): | |
image_out = gr.Image(label="Processed image", type="pil") | |
with gr.Row(): | |
try_button = gr.Button(value="Try-on") | |
image_blocks.launch() | |