Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Update 3 app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -1,23 +1,47 @@ | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
             
            import torch
         | 
| 3 | 
            -
            from speechbrain.pretrained import EncoderASR
         | 
| 4 | 
             
            import torchaudio
         | 
|  | |
| 5 |  | 
| 6 | 
            -
            #  | 
| 7 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 8 |  | 
| 9 | 
             
            def transcribe(audio):
         | 
| 10 | 
            -
                 | 
| 11 | 
            -
                 | 
| 12 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 13 |  | 
| 14 | 
            -
            #  | 
| 15 | 
             
            iface = gr.Interface(
         | 
| 16 | 
             
                fn=transcribe,
         | 
| 17 | 
            -
                inputs | 
| 18 | 
             
                outputs="text",
         | 
| 19 | 
             
                title="Reconnaissance Vocale Darija",
         | 
| 20 | 
             
                description="Parlez en Darija et obtenez la transcription."
         | 
| 21 | 
             
            )
         | 
| 22 |  | 
| 23 | 
            -
             | 
|  | |
|  | 
|  | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
             
            import torch
         | 
|  | |
| 3 | 
             
            import torchaudio
         | 
| 4 | 
            +
            from speechbrain.pretrained import EncoderASR
         | 
| 5 |  | 
| 6 | 
            +
            # Load the model
         | 
| 7 | 
            +
            try:
         | 
| 8 | 
            +
                asr_model = EncoderASR.from_hparams(
         | 
| 9 | 
            +
                    source="speechbrain/asr-wav2vec2-dvoice-darija",
         | 
| 10 | 
            +
                    savedir="tmp_model",
         | 
| 11 | 
            +
                    run_opts={"device": "cpu"}  # Ensure compatibility with CPU if needed
         | 
| 12 | 
            +
                )
         | 
| 13 | 
            +
            except Exception as e:
         | 
| 14 | 
            +
                print(f"Error loading model: {str(e)}")
         | 
| 15 |  | 
| 16 | 
             
            def transcribe(audio):
         | 
| 17 | 
            +
                """Transcribe audio to text using SpeechBrain ASR model."""
         | 
| 18 | 
            +
                if audio is None:
         | 
| 19 | 
            +
                    return "No audio file uploaded. Please upload a valid file."
         | 
| 20 | 
            +
             | 
| 21 | 
            +
                try:
         | 
| 22 | 
            +
                    # Load audio
         | 
| 23 | 
            +
                    waveform, sample_rate = torchaudio.load(audio)
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                    # Ensure correct sample rate (16kHz expected)
         | 
| 26 | 
            +
                    if sample_rate != 16000:
         | 
| 27 | 
            +
                        waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform)
         | 
| 28 | 
            +
             | 
| 29 | 
            +
                    # Transcribe
         | 
| 30 | 
            +
                    transcription = asr_model.transcribe_batch(waveform)
         | 
| 31 | 
            +
                    return transcription[0]
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                except Exception as e:
         | 
| 34 | 
            +
                    return f"Error processing audio: {str(e)}"
         | 
| 35 |  | 
| 36 | 
            +
            # Create Gradio Interface
         | 
| 37 | 
             
            iface = gr.Interface(
         | 
| 38 | 
             
                fn=transcribe,
         | 
| 39 | 
            +
                inputs=gr.Audio(type="filepath"),
         | 
| 40 | 
             
                outputs="text",
         | 
| 41 | 
             
                title="Reconnaissance Vocale Darija",
         | 
| 42 | 
             
                description="Parlez en Darija et obtenez la transcription."
         | 
| 43 | 
             
            )
         | 
| 44 |  | 
| 45 | 
            +
            # Launch the app
         | 
| 46 | 
            +
            if __name__ == "__main__":
         | 
| 47 | 
            +
                iface.launch()
         |