Spaces:
Running
on
A10G
Running
on
A10G
| import sys | |
| sys.path.append('src/blip') | |
| sys.path.append('src/clip') | |
| import clip | |
| import gradio as gr | |
| import hashlib | |
| import math | |
| import numpy as np | |
| import os | |
| import pickle | |
| import torch | |
| import torchvision.transforms as T | |
| import torchvision.transforms.functional as TF | |
| from models.blip import blip_decoder | |
| from PIL import Image | |
| from torch import nn | |
| from torch.nn import functional as F | |
| from tqdm import tqdm | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| print("Loading BLIP model...") | |
| blip_image_eval_size = 384 | |
| blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth' | |
| blip_model = blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='large', med_config='./src/blip/configs/med_config.json') | |
| blip_model.eval() | |
| blip_model = blip_model.to(device) | |
| print("Loading CLIP model...") | |
| clip_model_name = 'ViT-L/14' # https://huggingface.co/openai/clip-vit-large-patch14 | |
| clip_model, clip_preprocess = clip.load(clip_model_name, device=device) | |
| clip_model.to(device).eval() | |
| chunk_size = 2048 | |
| flavor_intermediate_count = 2048 | |
| class LabelTable(): | |
| def __init__(self, labels, desc): | |
| self.labels = labels | |
| self.embeds = [] | |
| hash = hashlib.sha256(",".join(labels).encode()).hexdigest() | |
| os.makedirs('./cache', exist_ok=True) | |
| cache_filepath = f"./cache/{desc}.pkl" | |
| if desc is not None and os.path.exists(cache_filepath): | |
| with open(cache_filepath, 'rb') as f: | |
| data = pickle.load(f) | |
| if data['hash'] == hash: | |
| self.labels = data['labels'] | |
| self.embeds = data['embeds'] | |
| if len(self.labels) != len(self.embeds): | |
| self.embeds = [] | |
| chunks = np.array_split(self.labels, max(1, len(self.labels)/chunk_size)) | |
| for chunk in tqdm(chunks, desc=f"Preprocessing {desc}" if desc else None): | |
| text_tokens = clip.tokenize(chunk).to(device) | |
| with torch.no_grad(): | |
| text_features = clip_model.encode_text(text_tokens).float() | |
| text_features /= text_features.norm(dim=-1, keepdim=True) | |
| text_features = text_features.half().cpu().numpy() | |
| for i in range(text_features.shape[0]): | |
| self.embeds.append(text_features[i]) | |
| with open(cache_filepath, 'wb') as f: | |
| pickle.dump({"labels":self.labels, "embeds":self.embeds, "hash":hash}, f) | |
| def _rank(self, image_features, text_embeds, top_count=1): | |
| top_count = min(top_count, len(text_embeds)) | |
| similarity = torch.zeros((1, len(text_embeds))).to(device) | |
| text_embeds = torch.stack([torch.from_numpy(t) for t in text_embeds]).float().to(device) | |
| for i in range(image_features.shape[0]): | |
| similarity += (image_features[i].unsqueeze(0) @ text_embeds.T).softmax(dim=-1) | |
| _, top_labels = similarity.cpu().topk(top_count, dim=-1) | |
| return [top_labels[0][i].numpy() for i in range(top_count)] | |
| def rank(self, image_features, top_count=1): | |
| if len(self.labels) <= chunk_size: | |
| tops = self._rank(image_features, self.embeds, top_count=top_count) | |
| return [self.labels[i] for i in tops] | |
| num_chunks = int(math.ceil(len(self.labels)/chunk_size)) | |
| keep_per_chunk = int(chunk_size / num_chunks) | |
| top_labels, top_embeds = [], [] | |
| for chunk_idx in tqdm(range(num_chunks)): | |
| start = chunk_idx*chunk_size | |
| stop = min(start+chunk_size, len(self.embeds)) | |
| tops = self._rank(image_features, self.embeds[start:stop], top_count=keep_per_chunk) | |
| top_labels.extend([self.labels[start+i] for i in tops]) | |
| top_embeds.extend([self.embeds[start+i] for i in tops]) | |
| tops = self._rank(image_features, top_embeds, top_count=top_count) | |
| return [top_labels[i] for i in tops] | |
| def generate_caption(pil_image): | |
| gpu_image = T.Compose([ | |
| T.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=TF.InterpolationMode.BICUBIC), | |
| T.ToTensor(), | |
| T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) | |
| ])(pil_image).unsqueeze(0).to(device) | |
| with torch.no_grad(): | |
| caption = blip_model.generate(gpu_image, sample=False, num_beams=3, max_length=20, min_length=5) | |
| return caption[0] | |
| def load_list(filename): | |
| with open(filename, 'r', encoding='utf-8', errors='replace') as f: | |
| items = [line.strip() for line in f.readlines()] | |
| return items | |
| def rank_top(image_features, text_array): | |
| text_tokens = clip.tokenize([text for text in text_array]).to(device) | |
| with torch.no_grad(): | |
| text_features = clip_model.encode_text(text_tokens).float() | |
| text_features /= text_features.norm(dim=-1, keepdim=True) | |
| similarity = torch.zeros((1, len(text_array)), device=device) | |
| for i in range(image_features.shape[0]): | |
| similarity += (image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1) | |
| _, top_labels = similarity.cpu().topk(1, dim=-1) | |
| return text_array[top_labels[0][0].numpy()] | |
| def similarity(image_features, text): | |
| text_tokens = clip.tokenize([text]).to(device) | |
| with torch.no_grad(): | |
| text_features = clip_model.encode_text(text_tokens).float() | |
| text_features /= text_features.norm(dim=-1, keepdim=True) | |
| similarity = text_features.cpu().numpy() @ image_features.cpu().numpy().T | |
| return similarity[0][0] | |
| def interrogate(image): | |
| caption = generate_caption(image) | |
| images = clip_preprocess(image).unsqueeze(0).to(device) | |
| with torch.no_grad(): | |
| image_features = clip_model.encode_image(images).float() | |
| image_features /= image_features.norm(dim=-1, keepdim=True) | |
| flaves = flavors.rank(image_features, flavor_intermediate_count) | |
| best_medium = mediums.rank(image_features, 1)[0] | |
| best_artist = artists.rank(image_features, 1)[0] | |
| best_trending = trendings.rank(image_features, 1)[0] | |
| best_movement = movements.rank(image_features, 1)[0] | |
| best_prompt = caption | |
| best_sim = similarity(image_features, best_prompt) | |
| def check(addition): | |
| nonlocal best_prompt, best_sim | |
| prompt = best_prompt + ", " + addition | |
| sim = similarity(image_features, prompt) | |
| if sim > best_sim: | |
| best_sim = sim | |
| best_prompt = prompt | |
| return True | |
| return False | |
| def check_multi_batch(opts): | |
| nonlocal best_prompt, best_sim | |
| prompts = [] | |
| for i in range(2**len(opts)): | |
| prompt = best_prompt | |
| for bit in range(len(opts)): | |
| if i & (1 << bit): | |
| prompt += ", " + opts[bit] | |
| prompts.append(prompt) | |
| prompt = rank_top(image_features, prompts) | |
| sim = similarity(image_features, prompt) | |
| if sim > best_sim: | |
| best_sim = sim | |
| best_prompt = prompt | |
| check_multi_batch([best_medium, best_artist, best_trending, best_movement]) | |
| extended_flavors = set(flaves) | |
| for _ in tqdm(range(25), desc="Flavor chain"): | |
| try: | |
| best = rank_top(image_features, [f"{best_prompt}, {f}" for f in extended_flavors]) | |
| flave = best[len(best_prompt)+2:] | |
| if not check(flave): | |
| break | |
| extended_flavors.remove(flave) | |
| except: | |
| # exceeded max prompt length | |
| break | |
| return best_prompt | |
| sites = ['Artstation', 'behance', 'cg society', 'cgsociety', 'deviantart', 'dribble', 'flickr', 'instagram', 'pexels', 'pinterest', 'pixabay', 'pixiv', 'polycount', 'reddit', 'shutterstock', 'tumblr', 'unsplash', 'zbrush central'] | |
| trending_list = [site for site in sites] | |
| trending_list.extend(["trending on "+site for site in sites]) | |
| trending_list.extend(["featured on "+site for site in sites]) | |
| trending_list.extend([site+" contest winner" for site in sites]) | |
| raw_artists = load_list('data/artists.txt') | |
| artists = [f"by {a}" for a in raw_artists] | |
| artists.extend([f"inspired by {a}" for a in raw_artists]) | |
| artists = LabelTable(artists, "artists") | |
| flavors = LabelTable(load_list('data/flavors.txt'), "flavors") | |
| mediums = LabelTable(load_list('data/mediums.txt'), "mediums") | |
| movements = LabelTable(load_list('data/movements.txt'), "movements") | |
| trendings = LabelTable(trending_list, "trendings") | |
| def inference(image): | |
| return interrogate(image) | |
| inputs = [gr.inputs.Image(type='pil')] | |
| outputs = gr.outputs.Textbox(label="Output") | |
| title = "CLIP Interrogator" | |
| description = "Want to figure out what a good prompt might be to create new images like an existing one? The CLIP Interrogator is here to get you answers!" | |
| article = """ | |
| <p> | |
| Example art by <a href="https://pixabay.com/illustrations/watercolour-painting-art-effect-4799014/">Layers</a> | |
| and <a href="https://pixabay.com/illustrations/animal-painting-cat-feline-pet-7154059/">Lin Tong</a> | |
| from pixabay.com | |
| </p> | |
| <p> | |
| Has this been helpful to you? Follow me on twitter | |
| <a href="https://twitter.com/pharmapsychotic">@pharmapsychotic</a> | |
| and check out more tools at my | |
| <a href="https://pharmapsychotic.com/tools.html">Ai generative art tools list</a> | |
| </p> | |
| """ | |
| io = gr.Interface( | |
| inference, | |
| inputs, | |
| outputs, | |
| title=title, description=description, | |
| article=article, | |
| examples=[['example01.jpg'], ['example02.jpg']] | |
| ) | |
| io.queue(max_size=32) | |
| io.launch() | |