permutans commited on
Commit
bb569c2
·
1 Parent(s): 2cc4ff2

Add application

Browse files
Files changed (5) hide show
  1. README.md +26 -5
  2. app.py +126 -0
  3. invoice.png +0 -0
  4. packages.txt +1 -0
  5. requirements.txt +6 -0
README.md CHANGED
@@ -1,12 +1,33 @@
1
  ---
2
  title: LayoutLMv3 FUNSD
3
- emoji:
4
- colorFrom: yellow
5
- colorTo: blue
6
  sdk: gradio
7
- sdk_version: 3.0.24
8
  app_file: app.py
9
  pinned: false
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  title: LayoutLMv3 FUNSD
3
+ emoji: 📑
4
+ colorFrom: indigo
5
+ colorTo: red
6
  sdk: gradio
 
7
  app_file: app.py
8
  pinned: false
9
  ---
10
 
11
+ # Configuration
12
+
13
+ `title`: _string_
14
+ Display title for the Space
15
+
16
+ `emoji`: _string_
17
+ Space emoji (emoji-only character allowed)
18
+
19
+ `colorFrom`: _string_
20
+ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
21
+
22
+ `colorTo`: _string_
23
+ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
24
+
25
+ `sdk`: _string_
26
+ Can be either `gradio` or `streamlit`
27
+
28
+ `app_file`: _string_
29
+ Path to your main application file (which contains either `gradio` or `streamlit` Python code).
30
+ Path is relative to the root of the repository.
31
+
32
+ `pinned`: _boolean_
33
+ Whether the Space stays on top of your list.
app.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ os.system("pip install pyyaml==5.1")
4
+ # workaround: install old version of pytorch since detectron2 hasn't released packages for pytorch 1.9 (issue: https://github.com/facebookresearch/detectron2/issues/3158)
5
+ os.system(
6
+ "pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html"
7
+ )
8
+
9
+ # install detectron2 that matches pytorch 1.8
10
+ # See https://detectron2.readthedocs.io/tutorials/install.html for instructions
11
+ os.system(
12
+ "pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html"
13
+ )
14
+
15
+ ## install PyTesseract
16
+ os.system("pip install -q pytesseract")
17
+
18
+ import gradio as gr
19
+ import numpy as np
20
+ from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
21
+ from datasets import load_dataset
22
+ from PIL import Image, ImageDraw, ImageFont
23
+
24
+ processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base")
25
+ model = LayoutLMv3ForTokenClassification.from_pretrained(
26
+ "nielsr/layoutlmv3-finetuned-funsd"
27
+ )
28
+
29
+ # load image example
30
+ dataset = load_dataset("nielsr/funsd", split="test")
31
+ image = Image.open(dataset[0]["image_path"]).convert("RGB")
32
+ image = Image.open("./invoice.png")
33
+ image.save("document.png")
34
+
35
+ labels = dataset.features["ner_tags"].feature.names
36
+ id2label = {v: k for v, k in enumerate(labels)}
37
+ label2color = {
38
+ "question": "blue",
39
+ "answer": "green",
40
+ "header": "orange",
41
+ "other": "violet",
42
+ }
43
+
44
+
45
+ def unnormalize_box(bbox, width, height):
46
+ return [
47
+ width * (bbox[0] / 1000),
48
+ height * (bbox[1] / 1000),
49
+ width * (bbox[2] / 1000),
50
+ height * (bbox[3] / 1000),
51
+ ]
52
+
53
+
54
+ def iob_to_label(label):
55
+ label = label[2:]
56
+ if not label:
57
+ return "other"
58
+ return label
59
+
60
+
61
+ def process_image(image):
62
+ width, height = image.size
63
+
64
+ # encode
65
+ encoding = processor(
66
+ image, truncation=True, return_offsets_mapping=True, return_tensors="pt"
67
+ )
68
+ offset_mapping = encoding.pop("offset_mapping")
69
+
70
+ # forward pass
71
+ outputs = model(**encoding)
72
+
73
+ # get predictions
74
+ predictions = outputs.logits.argmax(-1).squeeze().tolist()
75
+ token_boxes = encoding.bbox.squeeze().tolist()
76
+
77
+ # only keep non-subword predictions
78
+ is_subword = np.array(offset_mapping.squeeze().tolist())[:, 0] != 0
79
+ true_predictions = [
80
+ id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]
81
+ ]
82
+ true_boxes = [
83
+ unnormalize_box(box, width, height)
84
+ for idx, box in enumerate(token_boxes)
85
+ if not is_subword[idx]
86
+ ]
87
+
88
+ # draw predictions over the image
89
+ draw = ImageDraw.Draw(image)
90
+ font = ImageFont.load_default()
91
+ for prediction, box in zip(true_predictions, true_boxes):
92
+ predicted_label = iob_to_label(prediction).lower()
93
+ draw.rectangle(box, outline=label2color[predicted_label])
94
+ draw.text(
95
+ (box[0] + 10, box[1] - 10),
96
+ text=predicted_label,
97
+ fill=label2color[predicted_label],
98
+ font=font,
99
+ )
100
+
101
+ return image
102
+
103
+
104
+ title = "Interactive demo: LayoutLMv3"
105
+ description = "Demo for Microsoft's LayoutLMv3, a Transformer for state-of-the-art document image understanding tasks. This particular model is fine-tuned on FUNSD, a dataset of manually annotated forms. It annotates the words appearing in the image as QUESTION/ANSWER/HEADER/OTHER. To use it, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select 'Open image in new tab'."
106
+ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2204.08387' target='_blank'>LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking</a> | <a href='https://github.com/microsoft/unilm' target='_blank'>Github Repo</a></p>"
107
+ examples = [["document.png"]]
108
+
109
+ css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"
110
+ # css = "@media screen and (max-width: 600px) { .output_image, .input_image {height:20rem !important; width: 100% !important;} }"
111
+ # css = ".output_image, .input_image {height: 600px !important}"
112
+
113
+ css = ".image-preview {height: auto !important;}"
114
+
115
+ iface = gr.Interface(
116
+ fn=process_image,
117
+ inputs=gr.inputs.Image(type="pil"),
118
+ outputs=gr.outputs.Image(type="pil", label="annotated image"),
119
+ title=title,
120
+ description=description,
121
+ article=article,
122
+ examples=examples,
123
+ css=css,
124
+ enable_queue=True,
125
+ )
126
+ iface.launch(debug=True)
invoice.png ADDED
packages.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ tesseract-ocr
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ gradio
2
+ Pillow
3
+ numpy
4
+ datasets
5
+ torch
6
+ transformers