Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import spu.utils.distributed as ppd
|
3 |
+
|
4 |
+
from time import time
|
5 |
+
from datasets import load_dataset
|
6 |
+
from transformers import (
|
7 |
+
AutoConfig,
|
8 |
+
AutoImageProcessor,
|
9 |
+
FlaxResNetForImageClassification,
|
10 |
+
)
|
11 |
+
|
12 |
+
parser = argparse.ArgumentParser(description='distributed driver.')
|
13 |
+
parser.add_argument("-c", "--config", default="3pc.json")
|
14 |
+
args = parser.parse_args()
|
15 |
+
|
16 |
+
with open(args.config, 'r') as file:
|
17 |
+
conf = json.load(file)
|
18 |
+
|
19 |
+
ppd.init(conf["nodes"], conf["devices"])
|
20 |
+
|
21 |
+
dataset = load_dataset("huggingface/cats-image")
|
22 |
+
image = dataset["test"]["image"][0]
|
23 |
+
|
24 |
+
processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
|
25 |
+
model = FlaxResNetForImageClassification.from_pretrained("microsoft/resnet-50")
|
26 |
+
|
27 |
+
inputs = processor(image, return_tensors="jax")["pixel_values"]
|
28 |
+
|
29 |
+
|
30 |
+
def run_on_spu(inputs, model):
|
31 |
+
start = time()
|
32 |
+
inputs = ppd.device("P1")(lambda x: x)(inputs)
|
33 |
+
params = ppd.device("P2")(lambda x: x)(model.params)
|
34 |
+
outputs = ppd.device("SPU")(inference)(inputs, params)
|
35 |
+
outputs = ppd.get(outputs)
|
36 |
+
outputs = outputs['logits']
|
37 |
+
predicted_class_idx = jax.numpy.argmax(outputs, axis=-1)
|
38 |
+
print(f"Elapsed time:{time() - start}")
|
39 |
+
print("Predicted class:", model.config.id2label[predicted_class_idx.item()])
|
40 |
+
|
41 |
+
|
42 |
+
def run_on_cpu(inputs, model):
|
43 |
+
start = time()
|
44 |
+
outputs = inference(inputs, model.params)
|
45 |
+
outputs = outputs['logits']
|
46 |
+
predicted_class_idx = jax.numpy.argmax(outputs, axis=-1)
|
47 |
+
print(f"Elapsed time:{time() - start}")
|
48 |
+
print("Predicted class:", model.config.id2label[predicted_class_idx.item()])
|
49 |
+
|
50 |
+
|
51 |
+
if __name__ == "__main__":
|
52 |
+
print("Run on CPU\n------\n")
|
53 |
+
run_on_cpu(inputs, model)
|
54 |
+
print("Run on SPU\n------\n")
|
55 |
+
run_on_spu(inputs, model)
|