Spaces:
Paused
Paused
update chat vector
Browse files- Dockerfile +8 -2
- app/agent/custom_chatbot.py +39 -31
- app/main.py +0 -5
- app/utils/agentic_integration.py +4 -4
- app/utils/enhanced_analysis.py +2 -2
- app/utils/lightweight_agentic.py +4 -4
- app/utils/whisper_llm.py +85 -43
- requirements-hf.txt +2 -2
- requirements-old.txt +33 -0
- requirements-windows.txt +73 -0
- requirements.txt +36 -34
- supervisord.conf +22 -0
Dockerfile
CHANGED
|
@@ -20,6 +20,9 @@ RUN apt-get update && \
|
|
| 20 |
build-essential \
|
| 21 |
&& rm -rf /var/lib/apt/lists/*
|
| 22 |
|
|
|
|
|
|
|
|
|
|
| 23 |
# Create non-root user to avoid git permission issues
|
| 24 |
RUN useradd -m appuser && chown -R appuser /app
|
| 25 |
|
|
@@ -47,6 +50,9 @@ RUN pip install --no-cache-dir --upgrade pip && \
|
|
| 47 |
# Copy the entire app source code
|
| 48 |
COPY . .
|
| 49 |
|
|
|
|
|
|
|
|
|
|
| 50 |
# Create necessary directories
|
| 51 |
RUN mkdir -p vector_store logs
|
| 52 |
|
|
@@ -60,5 +66,5 @@ RUN pip install torch torchvision torchaudio --index-url https://download.pytorc
|
|
| 60 |
HEALTHCHECK --interval=30s --timeout=30s --start-period=5s --retries=3 \
|
| 61 |
CMD curl -f http://localhost:7860/docs || exit 1
|
| 62 |
|
| 63 |
-
# Run
|
| 64 |
-
CMD ["
|
|
|
|
| 20 |
build-essential \
|
| 21 |
&& rm -rf /var/lib/apt/lists/*
|
| 22 |
|
| 23 |
+
# Install supervisord
|
| 24 |
+
RUN apt-get update && apt-get install -y supervisor && rm -rf /var/lib/apt/lists/*
|
| 25 |
+
|
| 26 |
# Create non-root user to avoid git permission issues
|
| 27 |
RUN useradd -m appuser && chown -R appuser /app
|
| 28 |
|
|
|
|
| 50 |
# Copy the entire app source code
|
| 51 |
COPY . .
|
| 52 |
|
| 53 |
+
# Copy supervisord config
|
| 54 |
+
COPY supervisord.conf /etc/supervisor/conf.d/supervisord.conf
|
| 55 |
+
|
| 56 |
# Create necessary directories
|
| 57 |
RUN mkdir -p vector_store logs
|
| 58 |
|
|
|
|
| 66 |
HEALTHCHECK --interval=30s --timeout=30s --start-period=5s --retries=3 \
|
| 67 |
CMD curl -f http://localhost:7860/docs || exit 1
|
| 68 |
|
| 69 |
+
# Run supervisord
|
| 70 |
+
CMD ["/usr/bin/supervisord", "-c", "/etc/supervisor/conf.d/supervisord.conf"]
|
app/agent/custom_chatbot.py
CHANGED
|
@@ -7,7 +7,8 @@ from dotenv import load_dotenv
|
|
| 7 |
from langchain_groq import ChatGroq
|
| 8 |
|
| 9 |
from langchain_openai import OpenAIEmbeddings
|
| 10 |
-
from langchain_community.vectorstores import
|
|
|
|
| 11 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 12 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 13 |
from langchain_core.prompts import ChatPromptTemplate
|
|
@@ -27,9 +28,24 @@ if not groq_api_key:
|
|
| 27 |
logger.error("❌ GROQ_API_KEY is not set in the environment.")
|
| 28 |
raise RuntimeError("GROQ_API_KEY must be set in .env or environment variables.")
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
# LLM Initialization
|
| 31 |
try:
|
| 32 |
-
llm = ChatGroq(groq_api_key=groq_api_key, model_name="
|
| 33 |
logger.info("✅ ChatGroq LLM initialized successfully.")
|
| 34 |
except Exception as e:
|
| 35 |
logger.exception("❌ Failed to initialize ChatGroq LLM.")
|
|
@@ -45,31 +61,20 @@ Answer the question based only on the provided context.
|
|
| 45 |
Question: {input}
|
| 46 |
""")
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
# Input schema
|
| 49 |
class ChatRequest(BaseModel):
|
| 50 |
query: str
|
| 51 |
user_id: int
|
| 52 |
|
| 53 |
-
# Load vector store for a given user
|
| 54 |
-
def load_user_vector_store(user_id: int):
|
| 55 |
-
user_path = f"vector_store/user_{user_id}"
|
| 56 |
-
index_file = os.path.join(user_path, "index.faiss")
|
| 57 |
-
|
| 58 |
-
logger.info(f"🔍 Looking for vector store at {index_file}")
|
| 59 |
-
if not os.path.exists(index_file):
|
| 60 |
-
msg = f"No vector store found for user {user_id}"
|
| 61 |
-
logger.warning(f"📭 {msg}")
|
| 62 |
-
raise FileNotFoundError(msg)
|
| 63 |
-
|
| 64 |
-
try:
|
| 65 |
-
embeddings = OpenAIEmbeddings()
|
| 66 |
-
vector_store = FAISS.load_local(user_path, embeddings,allow_dangerous_deserialization=True)
|
| 67 |
-
logger.info(f"📦 Vector store loaded for user {user_id}")
|
| 68 |
-
return vector_store
|
| 69 |
-
except Exception as e:
|
| 70 |
-
logger.exception(f"❌ Failed to load vector store for user {user_id}")
|
| 71 |
-
raise
|
| 72 |
-
|
| 73 |
# Main chatbot endpoint
|
| 74 |
@router.post("/custom-chatbot")
|
| 75 |
async def custom_chatbot(request: ChatRequest):
|
|
@@ -78,25 +83,28 @@ async def custom_chatbot(request: ChatRequest):
|
|
| 78 |
logger.info(f"🤖 Received query from user {user_id}: {query}")
|
| 79 |
|
| 80 |
try:
|
| 81 |
-
|
| 82 |
-
|
|
|
|
| 83 |
|
|
|
|
| 84 |
doc_chain = create_stuff_documents_chain(llm, prompt_template)
|
| 85 |
rag_chain = create_retrieval_chain(retriever, doc_chain)
|
| 86 |
|
| 87 |
response = rag_chain.invoke({"input": query})
|
| 88 |
-
logger.info(f"✅ Response generated for user {user_id}")
|
| 89 |
|
| 90 |
return {
|
| 91 |
"answer": response["answer"],
|
| 92 |
"sources": [doc.page_content for doc in response.get("context", [])],
|
| 93 |
}
|
| 94 |
|
| 95 |
-
except FileNotFoundError as e:
|
| 96 |
-
logger.warning(f"🚫 {e}")
|
| 97 |
-
raise HTTPException(status_code=404, detail=str(e))
|
| 98 |
-
|
| 99 |
except Exception as e:
|
| 100 |
-
logger.
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
|
|
|
| 7 |
from langchain_groq import ChatGroq
|
| 8 |
|
| 9 |
from langchain_openai import OpenAIEmbeddings
|
| 10 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
| 11 |
+
from supabase.client import create_client
|
| 12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 13 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 14 |
from langchain_core.prompts import ChatPromptTemplate
|
|
|
|
| 28 |
logger.error("❌ GROQ_API_KEY is not set in the environment.")
|
| 29 |
raise RuntimeError("GROQ_API_KEY must be set in .env or environment variables.")
|
| 30 |
|
| 31 |
+
# Supabase Initialization
|
| 32 |
+
supabase_url = os.getenv("SUPABASE_URL")
|
| 33 |
+
supabase_key = os.getenv("SUPABASE_KEY")
|
| 34 |
+
|
| 35 |
+
if not supabase_url or not supabase_key:
|
| 36 |
+
logger.error("❌ SUPABASE_URL or SUPABASE_KEY is not set in the environment.")
|
| 37 |
+
raise RuntimeError("SUPABASE_URL and SUPABASE_KEY must be set in .env or environment variables.")
|
| 38 |
+
|
| 39 |
+
try:
|
| 40 |
+
supabase_client = create_client(supabase_url, supabase_key)
|
| 41 |
+
logger.info("✅ Supabase client initialized successfully.")
|
| 42 |
+
except Exception as e:
|
| 43 |
+
logger.exception("❌ Failed to initialize Supabase client.")
|
| 44 |
+
raise
|
| 45 |
+
|
| 46 |
# LLM Initialization
|
| 47 |
try:
|
| 48 |
+
llm = ChatGroq(groq_api_key=groq_api_key, model_name="llama-3.3-70b-versatile")
|
| 49 |
logger.info("✅ ChatGroq LLM initialized successfully.")
|
| 50 |
except Exception as e:
|
| 51 |
logger.exception("❌ Failed to initialize ChatGroq LLM.")
|
|
|
|
| 61 |
Question: {input}
|
| 62 |
""")
|
| 63 |
|
| 64 |
+
generic_prompt_template = ChatPromptTemplate.from_template("""
|
| 65 |
+
You are a helpful AI assistant. Answer the following question:
|
| 66 |
+
<context>
|
| 67 |
+
{context}
|
| 68 |
+
</context>
|
| 69 |
+
|
| 70 |
+
Question: {input}
|
| 71 |
+
""")
|
| 72 |
+
|
| 73 |
# Input schema
|
| 74 |
class ChatRequest(BaseModel):
|
| 75 |
query: str
|
| 76 |
user_id: int
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
# Main chatbot endpoint
|
| 79 |
@router.post("/custom-chatbot")
|
| 80 |
async def custom_chatbot(request: ChatRequest):
|
|
|
|
| 83 |
logger.info(f"🤖 Received query from user {user_id}: {query}")
|
| 84 |
|
| 85 |
try:
|
| 86 |
+
embeddings = OpenAIEmbeddings()
|
| 87 |
+
# Changed table_name and query_name to fixed values, and added filter to query
|
| 88 |
+
vector_store = SupabaseVectorStore(client=supabase_client, embedding=embeddings, table_name="documents", query_name="match_documents")
|
| 89 |
|
| 90 |
+
retriever = vector_store.as_retriever(search_kwargs={"filter": {"user_id": user_id}})
|
| 91 |
doc_chain = create_stuff_documents_chain(llm, prompt_template)
|
| 92 |
rag_chain = create_retrieval_chain(retriever, doc_chain)
|
| 93 |
|
| 94 |
response = rag_chain.invoke({"input": query})
|
| 95 |
+
logger.info(f"✅ Response generated for user {user_id} using RAG.")
|
| 96 |
|
| 97 |
return {
|
| 98 |
"answer": response["answer"],
|
| 99 |
"sources": [doc.page_content for doc in response.get("context", [])],
|
| 100 |
}
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
except Exception as e:
|
| 103 |
+
logger.warning(f"🤷 Falling back to generic response due to: {e}")
|
| 104 |
+
generic_chain = create_stuff_documents_chain(llm, generic_prompt_template)
|
| 105 |
+
generic_response = generic_chain.invoke({"input": query, "context": []}) # Pass empty context for generic response
|
| 106 |
+
return {
|
| 107 |
+
"answer": generic_response,
|
| 108 |
+
"sources": []
|
| 109 |
+
}
|
| 110 |
|
app/main.py
CHANGED
|
@@ -52,11 +52,6 @@ async def root():
|
|
| 52 |
"status": "running"
|
| 53 |
}
|
| 54 |
|
| 55 |
-
@app.get("/health")
|
| 56 |
-
async def health_check():
|
| 57 |
-
"""Health check endpoint for Hugging Face Spaces"""
|
| 58 |
-
return {"status": "healthy", "service": "dubsway-video-ai"}
|
| 59 |
-
|
| 60 |
@app.on_event("startup")
|
| 61 |
async def startup_event():
|
| 62 |
logger.info("✅ FastAPI app started")
|
|
|
|
| 52 |
"status": "running"
|
| 53 |
}
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
@app.on_event("startup")
|
| 56 |
async def startup_event():
|
| 57 |
logger.info("✅ FastAPI app started")
|
app/utils/agentic_integration.py
CHANGED
|
@@ -221,7 +221,7 @@ class MCPToolManager:
|
|
| 221 |
if self.groq_api_key:
|
| 222 |
try:
|
| 223 |
from langchain_groq import ChatGroq
|
| 224 |
-
llm = ChatGroq(groq_api_key=self.groq_api_key, model_name="
|
| 225 |
# This would use Groq for sentiment analysis
|
| 226 |
return {"positive": 0.6, "negative": 0.2, "neutral": 0.2}
|
| 227 |
except:
|
|
@@ -234,7 +234,7 @@ class MCPToolManager:
|
|
| 234 |
if self.groq_api_key:
|
| 235 |
try:
|
| 236 |
from langchain_groq import ChatGroq
|
| 237 |
-
llm = ChatGroq(groq_api_key=self.groq_api_key, model_name="
|
| 238 |
# This would use Groq for topic extraction
|
| 239 |
return ["technology", "innovation", "business"]
|
| 240 |
except:
|
|
@@ -247,7 +247,7 @@ class MCPToolManager:
|
|
| 247 |
if self.groq_api_key:
|
| 248 |
try:
|
| 249 |
from langchain_groq import ChatGroq
|
| 250 |
-
llm = ChatGroq(groq_api_key=self.groq_api_key, model_name="
|
| 251 |
# This would use Groq to add context
|
| 252 |
return f"Enhanced context for: {content}"
|
| 253 |
except:
|
|
@@ -299,7 +299,7 @@ def integrate_agentic_analysis():
|
|
| 299 |
|
| 300 |
Benefits:
|
| 301 |
- Multi-modal analysis (audio + visual)
|
| 302 |
-
- Context-aware summarization using Groq
|
| 303 |
- Beautiful, comprehensive reports
|
| 304 |
- Enhanced vector embeddings for better RAG
|
| 305 |
- Web search integration for context
|
|
|
|
| 221 |
if self.groq_api_key:
|
| 222 |
try:
|
| 223 |
from langchain_groq import ChatGroq
|
| 224 |
+
llm = ChatGroq(groq_api_key=self.groq_api_key, model_name="llama-3.3-70b-versatile")
|
| 225 |
# This would use Groq for sentiment analysis
|
| 226 |
return {"positive": 0.6, "negative": 0.2, "neutral": 0.2}
|
| 227 |
except:
|
|
|
|
| 234 |
if self.groq_api_key:
|
| 235 |
try:
|
| 236 |
from langchain_groq import ChatGroq
|
| 237 |
+
llm = ChatGroq(groq_api_key=self.groq_api_key, model_name="llama-3.3-70b-versatile")
|
| 238 |
# This would use Groq for topic extraction
|
| 239 |
return ["technology", "innovation", "business"]
|
| 240 |
except:
|
|
|
|
| 247 |
if self.groq_api_key:
|
| 248 |
try:
|
| 249 |
from langchain_groq import ChatGroq
|
| 250 |
+
llm = ChatGroq(groq_api_key=self.groq_api_key, model_name="llama-3.3-70b-versatile")
|
| 251 |
# This would use Groq to add context
|
| 252 |
return f"Enhanced context for: {content}"
|
| 253 |
except:
|
|
|
|
| 299 |
|
| 300 |
Benefits:
|
| 301 |
- Multi-modal analysis (audio + visual)
|
| 302 |
+
- Context-aware summarization using Groq llama-3.3-70b-versatile
|
| 303 |
- Beautiful, comprehensive reports
|
| 304 |
- Enhanced vector embeddings for better RAG
|
| 305 |
- Web search integration for context
|
app/utils/enhanced_analysis.py
CHANGED
|
@@ -82,7 +82,7 @@ class MultiModalAnalyzer:
|
|
| 82 |
|
| 83 |
self.llm = ChatGroq(
|
| 84 |
groq_api_key=groq_api_key,
|
| 85 |
-
model_name="
|
| 86 |
temperature=0.1,
|
| 87 |
max_tokens=2000
|
| 88 |
)
|
|
@@ -325,7 +325,7 @@ Based on the analysis, consider:
|
|
| 325 |
- Target audience insights
|
| 326 |
|
| 327 |
---
|
| 328 |
-
*Report generated on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} using Groq
|
| 329 |
"""
|
| 330 |
|
| 331 |
return report_template
|
|
|
|
| 82 |
|
| 83 |
self.llm = ChatGroq(
|
| 84 |
groq_api_key=groq_api_key,
|
| 85 |
+
model_name="llama-3.3-70b-versatile",
|
| 86 |
temperature=0.1,
|
| 87 |
max_tokens=2000
|
| 88 |
)
|
|
|
|
| 325 |
- Target audience insights
|
| 326 |
|
| 327 |
---
|
| 328 |
+
*Report generated on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} using Groq llama-3.3-70b-versatile*
|
| 329 |
"""
|
| 330 |
|
| 331 |
return report_template
|
app/utils/lightweight_agentic.py
CHANGED
|
@@ -74,7 +74,7 @@ class LightweightAgenticProcessor:
|
|
| 74 |
# Initialize Groq
|
| 75 |
llm = ChatGroq(
|
| 76 |
groq_api_key=self.groq_api_key,
|
| 77 |
-
model_name="
|
| 78 |
temperature=0.1,
|
| 79 |
max_tokens=1000
|
| 80 |
)
|
|
@@ -128,7 +128,7 @@ class LightweightAgenticProcessor:
|
|
| 128 |
## 📝 Basic Summary
|
| 129 |
{summary}
|
| 130 |
|
| 131 |
-
## 🤖 Enhanced Analysis (Groq
|
| 132 |
{enhanced_analysis.get('enhanced_analysis', 'Analysis not available')}
|
| 133 |
|
| 134 |
## 🎯 Key Insights
|
|
@@ -136,13 +136,13 @@ class LightweightAgenticProcessor:
|
|
| 136 |
|
| 137 |
## 📊 Analysis Details
|
| 138 |
- **Processing Method**: Lightweight Agentic Analysis
|
| 139 |
-
- **LLM Provider**: Groq
|
| 140 |
- **Enhanced Features**: Text-based analysis and reasoning
|
| 141 |
- **Topics**: {', '.join(enhanced_analysis.get('topics', ['General']))}
|
| 142 |
- **Sentiment**: {enhanced_analysis.get('sentiment', {})}
|
| 143 |
|
| 144 |
---
|
| 145 |
-
*Report generated using Groq
|
| 146 |
"""
|
| 147 |
else:
|
| 148 |
return f"""
|
|
|
|
| 74 |
# Initialize Groq
|
| 75 |
llm = ChatGroq(
|
| 76 |
groq_api_key=self.groq_api_key,
|
| 77 |
+
model_name="llama-3.3-70b-versatile",
|
| 78 |
temperature=0.1,
|
| 79 |
max_tokens=1000
|
| 80 |
)
|
|
|
|
| 128 |
## 📝 Basic Summary
|
| 129 |
{summary}
|
| 130 |
|
| 131 |
+
## 🤖 Enhanced Analysis (Groq llama-3.3-70b-versatile)
|
| 132 |
{enhanced_analysis.get('enhanced_analysis', 'Analysis not available')}
|
| 133 |
|
| 134 |
## 🎯 Key Insights
|
|
|
|
| 136 |
|
| 137 |
## 📊 Analysis Details
|
| 138 |
- **Processing Method**: Lightweight Agentic Analysis
|
| 139 |
+
- **LLM Provider**: Groq llama-3.3-70b-versatile
|
| 140 |
- **Enhanced Features**: Text-based analysis and reasoning
|
| 141 |
- **Topics**: {', '.join(enhanced_analysis.get('topics', ['General']))}
|
| 142 |
- **Sentiment**: {enhanced_analysis.get('sentiment', {})}
|
| 143 |
|
| 144 |
---
|
| 145 |
+
*Report generated using Groq llama-3.3-70b-versatile*
|
| 146 |
"""
|
| 147 |
else:
|
| 148 |
return f"""
|
app/utils/whisper_llm.py
CHANGED
|
@@ -2,6 +2,7 @@ import os
|
|
| 2 |
import logging
|
| 3 |
import requests
|
| 4 |
import tempfile
|
|
|
|
| 5 |
import torch
|
| 6 |
from transformers import pipeline
|
| 7 |
from faster_whisper import WhisperModel
|
|
@@ -9,7 +10,11 @@ from faster_whisper import WhisperModel
|
|
| 9 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 10 |
from langchain_openai import OpenAIEmbeddings
|
| 11 |
from langchain_core.documents import Document
|
| 12 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
from sqlalchemy import select
|
| 15 |
from sqlalchemy.ext.asyncio import AsyncSession
|
|
@@ -26,14 +31,26 @@ if not logger.handlers:
|
|
| 26 |
|
| 27 |
# Whisper Model Initialization
|
| 28 |
def get_whisper_model():
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
else:
|
| 34 |
-
|
| 35 |
-
compute_type = "int8"
|
| 36 |
-
logger.warning("GPU not available: Falling back to CPU with int8 compute")
|
| 37 |
|
| 38 |
try:
|
| 39 |
model = WhisperModel("base", device=device, compute_type=compute_type)
|
|
@@ -45,6 +62,21 @@ def get_whisper_model():
|
|
| 45 |
|
| 46 |
whisper_model = get_whisper_model()
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
# Summarizer
|
| 49 |
try:
|
| 50 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
|
@@ -152,50 +184,65 @@ async def analyze(video_url: str, user_id: int, db: AsyncSession):
|
|
| 152 |
|
| 153 |
# Step 2: Transcribe
|
| 154 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
logger.info("Transcribing audio with Faster-Whisper...")
|
| 156 |
-
|
| 157 |
# Get transcription result
|
| 158 |
result = whisper_model.transcribe(tmp_path)
|
| 159 |
-
|
| 160 |
# Handle different return formats from faster-whisper
|
| 161 |
if isinstance(result, tuple):
|
| 162 |
segments, info = result
|
| 163 |
else:
|
| 164 |
-
# If it's not a tuple, it might be just segments
|
| 165 |
segments = result
|
| 166 |
info = None
|
| 167 |
-
|
| 168 |
# Extract text from segments
|
| 169 |
if segments:
|
| 170 |
text = " ".join(segment.text for segment in segments if hasattr(segment, 'text') and segment.text)
|
| 171 |
else:
|
| 172 |
text = ""
|
| 173 |
-
|
| 174 |
logger.info(f"Transcription completed. Length: {len(text)} characters.")
|
| 175 |
-
|
| 176 |
# Log additional info if available
|
| 177 |
if info:
|
| 178 |
logger.info(f"Transcription info: language={getattr(info, 'language', 'unknown')}, language_probability={getattr(info, 'language_probability', 'unknown')}")
|
| 179 |
-
|
| 180 |
# Handle empty transcription
|
| 181 |
if not text or len(text.strip()) == 0:
|
| 182 |
logger.warning("Transcription resulted in empty text, using fallback")
|
| 183 |
text = "No speech detected in video"
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
| 185 |
except Exception as e:
|
| 186 |
logger.error(f"Transcription failed: {e}")
|
| 187 |
logger.error(f"Error type: {type(e)}")
|
| 188 |
import traceback
|
| 189 |
logger.error(f"Traceback: {traceback.format_exc()}")
|
| 190 |
-
|
| 191 |
# Provide fallback text instead of failing completely
|
| 192 |
logger.warning("Using fallback text due to transcription failure")
|
| 193 |
text = "Transcription failed - video may be corrupted or have no audio"
|
| 194 |
-
|
| 195 |
-
#
|
| 196 |
try:
|
| 197 |
os.unlink(tmp_path)
|
| 198 |
-
except:
|
| 199 |
pass
|
| 200 |
|
| 201 |
# Step 3: Summarize
|
|
@@ -217,33 +264,28 @@ async def analyze(video_url: str, user_id: int, db: AsyncSession):
|
|
| 217 |
except:
|
| 218 |
pass
|
| 219 |
|
| 220 |
-
# Step 4: Save to
|
| 221 |
try:
|
| 222 |
-
logger.info("
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
user_vector_path = f"vector_store/user_{user_id}"
|
| 227 |
-
os.makedirs(user_vector_path, exist_ok=True)
|
| 228 |
-
|
| 229 |
-
if os.path.exists(os.path.join(user_vector_path, "index.faiss")):
|
| 230 |
-
# Load existing vector store - safe to use allow_dangerous_deserialization
|
| 231 |
-
# since we're loading our own created files
|
| 232 |
-
vector_store = FAISS.load_local(user_vector_path, embeddings, allow_dangerous_deserialization=True)
|
| 233 |
-
vector_store.add_documents(documents)
|
| 234 |
else:
|
| 235 |
-
|
| 236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
|
| 238 |
-
vector_store.save_local(user_vector_path)
|
| 239 |
-
logger.info(f"Vector store saved at: {user_vector_path}")
|
| 240 |
except Exception as e:
|
| 241 |
-
logger.error(f"Failed to
|
| 242 |
-
# Clean up temp file
|
| 243 |
-
try:
|
| 244 |
-
os.unlink(tmp_path)
|
| 245 |
-
except:
|
| 246 |
-
pass
|
| 247 |
raise
|
| 248 |
|
| 249 |
# Clean up temp file
|
|
|
|
| 2 |
import logging
|
| 3 |
import requests
|
| 4 |
import tempfile
|
| 5 |
+
import uuid
|
| 6 |
import torch
|
| 7 |
from transformers import pipeline
|
| 8 |
from faster_whisper import WhisperModel
|
|
|
|
| 10 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 11 |
from langchain_openai import OpenAIEmbeddings
|
| 12 |
from langchain_core.documents import Document
|
| 13 |
+
from supabase.client import create_client
|
| 14 |
+
try:
|
| 15 |
+
import av # Optional: used to pre-check audio streams for robustness
|
| 16 |
+
except Exception: # pragma: no cover
|
| 17 |
+
av = None
|
| 18 |
|
| 19 |
from sqlalchemy import select
|
| 20 |
from sqlalchemy.ext.asyncio import AsyncSession
|
|
|
|
| 31 |
|
| 32 |
# Whisper Model Initialization
|
| 33 |
def get_whisper_model():
|
| 34 |
+
# Allow overrides via env vars
|
| 35 |
+
env_device = os.getenv("FASTER_WHISPER_DEVICE")
|
| 36 |
+
env_compute = os.getenv("FASTER_WHISPER_COMPUTE")
|
| 37 |
+
|
| 38 |
+
if env_device:
|
| 39 |
+
device = env_device
|
| 40 |
+
logger.info(f"Using device from env FASTER_WHISPER_DEVICE={env_device}")
|
| 41 |
+
else:
|
| 42 |
+
if torch.cuda.is_available():
|
| 43 |
+
device = "cuda"
|
| 44 |
+
logger.info("GPU detected: Using CUDA")
|
| 45 |
+
else:
|
| 46 |
+
device = "cpu"
|
| 47 |
+
logger.warning("GPU not available: Falling back to CPU")
|
| 48 |
+
|
| 49 |
+
if env_compute:
|
| 50 |
+
compute_type = env_compute
|
| 51 |
+
logger.info(f"Using compute_type from env FASTER_WHISPER_COMPUTE={env_compute}")
|
| 52 |
else:
|
| 53 |
+
compute_type = "float32" if device == "cuda" else "int8"
|
|
|
|
|
|
|
| 54 |
|
| 55 |
try:
|
| 56 |
model = WhisperModel("base", device=device, compute_type=compute_type)
|
|
|
|
| 62 |
|
| 63 |
whisper_model = get_whisper_model()
|
| 64 |
|
| 65 |
+
# Supabase Initialization
|
| 66 |
+
supabase_url = os.getenv("SUPABASE_URL")
|
| 67 |
+
supabase_key = os.getenv("SUPABASE_KEY")
|
| 68 |
+
|
| 69 |
+
if not supabase_url or not supabase_key:
|
| 70 |
+
logger.error("❌ SUPABASE_URL or SUPABASE_KEY is not set in the environment.")
|
| 71 |
+
raise RuntimeError("SUPABASE_URL and SUPABASE_KEY must be set in .env or environment variables.")
|
| 72 |
+
|
| 73 |
+
try:
|
| 74 |
+
supabase_client = create_client(supabase_url, supabase_key)
|
| 75 |
+
logger.info("✅ Supabase client initialized successfully.")
|
| 76 |
+
except Exception as e:
|
| 77 |
+
logger.exception("❌ Failed to initialize Supabase client.")
|
| 78 |
+
raise
|
| 79 |
+
|
| 80 |
# Summarizer
|
| 81 |
try:
|
| 82 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
|
|
|
| 184 |
|
| 185 |
# Step 2: Transcribe
|
| 186 |
try:
|
| 187 |
+
# Optional pre-check: ensure the file has an audio stream
|
| 188 |
+
if av is not None:
|
| 189 |
+
try:
|
| 190 |
+
with av.open(tmp_path) as container:
|
| 191 |
+
has_audio = any(s.type == "audio" for s in container.streams)
|
| 192 |
+
if not has_audio:
|
| 193 |
+
logger.error("No valid audio stream in file; skipping transcription")
|
| 194 |
+
raise IndexError("No audio stream")
|
| 195 |
+
except IndexError:
|
| 196 |
+
raise
|
| 197 |
+
except Exception:
|
| 198 |
+
# If PyAV check fails, continue and let transcribe attempt
|
| 199 |
+
pass
|
| 200 |
+
|
| 201 |
logger.info("Transcribing audio with Faster-Whisper...")
|
| 202 |
+
|
| 203 |
# Get transcription result
|
| 204 |
result = whisper_model.transcribe(tmp_path)
|
| 205 |
+
|
| 206 |
# Handle different return formats from faster-whisper
|
| 207 |
if isinstance(result, tuple):
|
| 208 |
segments, info = result
|
| 209 |
else:
|
|
|
|
| 210 |
segments = result
|
| 211 |
info = None
|
| 212 |
+
|
| 213 |
# Extract text from segments
|
| 214 |
if segments:
|
| 215 |
text = " ".join(segment.text for segment in segments if hasattr(segment, 'text') and segment.text)
|
| 216 |
else:
|
| 217 |
text = ""
|
| 218 |
+
|
| 219 |
logger.info(f"Transcription completed. Length: {len(text)} characters.")
|
| 220 |
+
|
| 221 |
# Log additional info if available
|
| 222 |
if info:
|
| 223 |
logger.info(f"Transcription info: language={getattr(info, 'language', 'unknown')}, language_probability={getattr(info, 'language_probability', 'unknown')}")
|
| 224 |
+
|
| 225 |
# Handle empty transcription
|
| 226 |
if not text or len(text.strip()) == 0:
|
| 227 |
logger.warning("Transcription resulted in empty text, using fallback")
|
| 228 |
text = "No speech detected in video"
|
| 229 |
+
|
| 230 |
+
except IndexError:
|
| 231 |
+
logger.error("No valid audio stream in file; skipping transcription")
|
| 232 |
+
text = "Transcription failed - video may be corrupted or have no audio"
|
| 233 |
except Exception as e:
|
| 234 |
logger.error(f"Transcription failed: {e}")
|
| 235 |
logger.error(f"Error type: {type(e)}")
|
| 236 |
import traceback
|
| 237 |
logger.error(f"Traceback: {traceback.format_exc()}")
|
|
|
|
| 238 |
# Provide fallback text instead of failing completely
|
| 239 |
logger.warning("Using fallback text due to transcription failure")
|
| 240 |
text = "Transcription failed - video may be corrupted or have no audio"
|
| 241 |
+
finally:
|
| 242 |
+
# Always attempt to clean up temp file
|
| 243 |
try:
|
| 244 |
os.unlink(tmp_path)
|
| 245 |
+
except Exception:
|
| 246 |
pass
|
| 247 |
|
| 248 |
# Step 3: Summarize
|
|
|
|
| 264 |
except:
|
| 265 |
pass
|
| 266 |
|
| 267 |
+
# Step 4: Save to Supabase vector store (explicit user_id)
|
| 268 |
try:
|
| 269 |
+
logger.info("Saving summary to Supabase vector store for user...")
|
| 270 |
+
if not summary or not summary.strip():
|
| 271 |
+
logger.warning("Empty summary; skipping Supabase insert")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
else:
|
| 273 |
+
embeddings = OpenAIEmbeddings()
|
| 274 |
+
embedding_vector = embeddings.embed_query(summary)
|
| 275 |
+
|
| 276 |
+
document_id = str(uuid.uuid4())
|
| 277 |
+
payload = {
|
| 278 |
+
"id": document_id,
|
| 279 |
+
"user_id": user_id,
|
| 280 |
+
"content": summary,
|
| 281 |
+
"embedding": embedding_vector,
|
| 282 |
+
"metadata": {"user_id": user_id, "video_url": video_url},
|
| 283 |
+
}
|
| 284 |
+
supabase_client.table("documents").insert(payload).execute()
|
| 285 |
+
logger.info(f"Summary saved to Supabase for user: {user_id}")
|
| 286 |
|
|
|
|
|
|
|
| 287 |
except Exception as e:
|
| 288 |
+
logger.error(f"Failed to save to Supabase vector store: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
raise
|
| 290 |
|
| 291 |
# Clean up temp file
|
requirements-hf.txt
CHANGED
|
@@ -3,7 +3,7 @@ fastapi==0.104.1
|
|
| 3 |
uvicorn[standard]==0.24.0
|
| 4 |
python-dotenv==1.0.0
|
| 5 |
python-multipart==0.0.6
|
| 6 |
-
pydantic[email]==2.
|
| 7 |
|
| 8 |
# Database
|
| 9 |
asyncpg==0.29.0
|
|
@@ -23,7 +23,7 @@ langchain-groq==0.0.1
|
|
| 23 |
|
| 24 |
# Embedding & vector DB
|
| 25 |
sentence-transformers==2.2.2
|
| 26 |
-
|
| 27 |
|
| 28 |
# Transcription
|
| 29 |
faster-whisper==1.0.1
|
|
|
|
| 3 |
uvicorn[standard]==0.24.0
|
| 4 |
python-dotenv==1.0.0
|
| 5 |
python-multipart==0.0.6
|
| 6 |
+
pydantic[email]==2.11.7
|
| 7 |
|
| 8 |
# Database
|
| 9 |
asyncpg==0.29.0
|
|
|
|
| 23 |
|
| 24 |
# Embedding & vector DB
|
| 25 |
sentence-transformers==2.2.2
|
| 26 |
+
supabase==2.18.1
|
| 27 |
|
| 28 |
# Transcription
|
| 29 |
faster-whisper==1.0.1
|
requirements-old.txt
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
# Tools & Transcription
|
| 4 |
+
transformers
|
| 5 |
+
whisper
|
| 6 |
+
faster-whisper==1.0.1
|
| 7 |
+
ctranslate2>=4.6.0
|
| 8 |
+
PyPDF2
|
| 9 |
+
pypdf
|
| 10 |
+
reportlab
|
| 11 |
+
bs4
|
| 12 |
+
beautifulsoup4
|
| 13 |
+
|
| 14 |
+
# Enhanced Analysis & MCP/ACP
|
| 15 |
+
opencv-python
|
| 16 |
+
pillow
|
| 17 |
+
duckduckgo-search
|
| 18 |
+
wikipedia-api
|
| 19 |
+
easyocr
|
| 20 |
+
langchain-groq
|
| 21 |
+
timm
|
| 22 |
+
|
| 23 |
+
# Optional
|
| 24 |
+
sse-starlette
|
| 25 |
+
wikipedia
|
| 26 |
+
arxiv
|
| 27 |
+
cassio
|
| 28 |
+
streamlit
|
| 29 |
+
supabase
|
| 30 |
+
# CUDA-enabled Torch (installed separately)
|
| 31 |
+
# torch==2.2.2+cu121 and torchvision==0.17.2+cu121
|
| 32 |
+
# Must be installed via pip with specific index:
|
| 33 |
+
# pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
|
requirements-windows.txt
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Windows-compatible requirements file
|
| 2 |
+
# This avoids compilation issues by using pre-compiled packages
|
| 3 |
+
|
| 4 |
+
# Core FastAPI dependencies
|
| 5 |
+
fastapi==0.104.1
|
| 6 |
+
uvicorn[standard]==0.24.0
|
| 7 |
+
python-dotenv==1.0.0
|
| 8 |
+
python-multipart==0.0.6
|
| 9 |
+
pydantic[email]==2.11.7
|
| 10 |
+
requests==2.31.0
|
| 11 |
+
boto3==1.34.0
|
| 12 |
+
|
| 13 |
+
# Database
|
| 14 |
+
asyncpg==0.29.0
|
| 15 |
+
sqlalchemy==2.0.23
|
| 16 |
+
aiosqlite==0.19.0
|
| 17 |
+
databases
|
| 18 |
+
psycopg2-binary
|
| 19 |
+
|
| 20 |
+
# Auth
|
| 21 |
+
passlib[bcrypt]==1.7.4
|
| 22 |
+
python-jose[cryptography]==3.3.0
|
| 23 |
+
|
| 24 |
+
# LLM & RAG - using compatible versions
|
| 25 |
+
langchain==0.1.13
|
| 26 |
+
langchain-openai==0.1.7
|
| 27 |
+
langchain-community==0.0.38
|
| 28 |
+
langchain-core==0.1.53
|
| 29 |
+
langchain-groq==0.0.1
|
| 30 |
+
langchainhub
|
| 31 |
+
langserve
|
| 32 |
+
langchain-objectbox
|
| 33 |
+
|
| 34 |
+
# Embedding & vector DB
|
| 35 |
+
sentence-transformers==2.2.2
|
| 36 |
+
supabase==2.18.1
|
| 37 |
+
chromadb
|
| 38 |
+
|
| 39 |
+
# Transcription - using latest compatible versions
|
| 40 |
+
faster-whisper==1.0.1
|
| 41 |
+
ctranslate2>=4.6.0
|
| 42 |
+
transformers==4.35.2
|
| 43 |
+
whisper
|
| 44 |
+
|
| 45 |
+
# PDF & Reports
|
| 46 |
+
PyPDF2==3.0.1
|
| 47 |
+
reportlab==4.0.7
|
| 48 |
+
beautifulsoup4==4.12.2
|
| 49 |
+
bs4
|
| 50 |
+
pypdf
|
| 51 |
+
|
| 52 |
+
# Enhanced Analysis
|
| 53 |
+
duckduckgo-search==4.1.1
|
| 54 |
+
wikipedia-api==0.6.0
|
| 55 |
+
timm==0.9.12
|
| 56 |
+
opencv-python
|
| 57 |
+
pillow
|
| 58 |
+
easyocr
|
| 59 |
+
|
| 60 |
+
# Optional
|
| 61 |
+
sse-starlette
|
| 62 |
+
wikipedia
|
| 63 |
+
arxiv
|
| 64 |
+
cassio
|
| 65 |
+
streamlit
|
| 66 |
+
|
| 67 |
+
# Pre-compiled numpy and scipy to avoid compilation
|
| 68 |
+
numpy>=1.24.0,<2.0
|
| 69 |
+
scipy>=1.10.0
|
| 70 |
+
|
| 71 |
+
# CUDA-enabled Torch (install separately if needed)
|
| 72 |
+
# pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
|
| 73 |
+
|
requirements.txt
CHANGED
|
@@ -1,66 +1,68 @@
|
|
| 1 |
-
#
|
| 2 |
-
fastapi
|
| 3 |
-
uvicorn
|
| 4 |
-
boto3
|
| 5 |
-
requests
|
| 6 |
-
python-dotenv
|
| 7 |
-
python-multipart
|
| 8 |
-
pydantic[email]>=1.10,<2.0 # V1 for compatibility with many frameworks
|
| 9 |
|
| 10 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
asyncpg
|
| 12 |
-
|
| 13 |
databases
|
| 14 |
psycopg2-binary
|
| 15 |
-
aiosqlite
|
| 16 |
|
| 17 |
# Auth
|
| 18 |
-
passlib[bcrypt]
|
| 19 |
-
python-jose[cryptography]
|
| 20 |
|
| 21 |
# LLM & RAG
|
| 22 |
langchain==0.1.13
|
| 23 |
langchain-openai==0.1.7
|
| 24 |
langchain-community==0.0.38
|
| 25 |
langchain-core==0.1.53
|
| 26 |
-
langchain-groq
|
| 27 |
langchainhub
|
| 28 |
langserve
|
| 29 |
langchain-objectbox
|
| 30 |
|
| 31 |
# Embedding & vector DB
|
| 32 |
sentence-transformers==2.2.2
|
| 33 |
-
|
| 34 |
chromadb
|
| 35 |
|
| 36 |
-
#
|
| 37 |
-
transformers
|
| 38 |
-
whisper
|
| 39 |
faster-whisper==1.0.1
|
| 40 |
-
ctranslate2
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
reportlab
|
| 44 |
-
bs4
|
| 45 |
-
beautifulsoup4
|
| 46 |
|
| 47 |
-
#
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
# Optional
|
|
|
|
| 57 |
sse-starlette
|
| 58 |
wikipedia
|
| 59 |
arxiv
|
| 60 |
cassio
|
| 61 |
streamlit
|
| 62 |
-
|
| 63 |
# CUDA-enabled Torch (installed separately)
|
| 64 |
# torch==2.2.2+cu121 and torchvision==0.17.2+cu121
|
| 65 |
# Must be installed via pip with specific index:
|
| 66 |
-
# pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
|
|
|
|
| 1 |
+
# Merged requirements from requirements.txt and requirements-hf.txt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
# Core FastAPI dependencies
|
| 4 |
+
fastapi==0.104.1
|
| 5 |
+
uvicorn[standard]==0.24.0
|
| 6 |
+
python-dotenv==1.0.0
|
| 7 |
+
python-multipart==0.0.6
|
| 8 |
+
pydantic[email]==2.11.7
|
| 9 |
+
requests==2.31.0
|
| 10 |
+
boto3==1.34.0
|
| 11 |
+
|
| 12 |
+
# Database
|
| 13 |
asyncpg
|
| 14 |
+
aiosqlite
|
| 15 |
databases
|
| 16 |
psycopg2-binary
|
|
|
|
| 17 |
|
| 18 |
# Auth
|
| 19 |
+
passlib[bcrypt]==1.7.4
|
| 20 |
+
python-jose[cryptography]==3.3.0
|
| 21 |
|
| 22 |
# LLM & RAG
|
| 23 |
langchain==0.1.13
|
| 24 |
langchain-openai==0.1.7
|
| 25 |
langchain-community==0.0.38
|
| 26 |
langchain-core==0.1.53
|
| 27 |
+
langchain-groq==0.0.1
|
| 28 |
langchainhub
|
| 29 |
langserve
|
| 30 |
langchain-objectbox
|
| 31 |
|
| 32 |
# Embedding & vector DB
|
| 33 |
sentence-transformers==2.2.2
|
| 34 |
+
supabase==2.18.1
|
| 35 |
chromadb
|
| 36 |
|
| 37 |
+
# Transcription
|
|
|
|
|
|
|
| 38 |
faster-whisper==1.0.1
|
| 39 |
+
ctranslate2
|
| 40 |
+
transformers==4.35.2
|
| 41 |
+
whisper # from requirements.txt, not explicitly in hf
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
# PDF & Reports
|
| 44 |
+
PyPDF2==3.0.1
|
| 45 |
+
reportlab==4.0.7
|
| 46 |
+
beautifulsoup4==4.12.2
|
| 47 |
+
bs4 # from requirements.txt
|
| 48 |
+
pypdf # from requirements.txt
|
| 49 |
+
|
| 50 |
+
# Enhanced Analysis
|
| 51 |
+
duckduckgo-search==4.1.1
|
| 52 |
+
wikipedia-api==0.6.0
|
| 53 |
+
timm==0.9.12
|
| 54 |
+
opencv-python # from requirements.txt
|
| 55 |
+
pillow # from requirements.txt
|
| 56 |
+
easyocr # from requirements.txt
|
| 57 |
|
| 58 |
# Optional
|
| 59 |
+
faiss-gpu
|
| 60 |
sse-starlette
|
| 61 |
wikipedia
|
| 62 |
arxiv
|
| 63 |
cassio
|
| 64 |
streamlit
|
|
|
|
| 65 |
# CUDA-enabled Torch (installed separately)
|
| 66 |
# torch==2.2.2+cu121 and torchvision==0.17.2+cu121
|
| 67 |
# Must be installed via pip with specific index:
|
| 68 |
+
# pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
|
supervisord.conf
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[supervisord]
|
| 2 |
+
nodaemon=true
|
| 3 |
+
logfile=/dev/null
|
| 4 |
+
loglevel=info
|
| 5 |
+
|
| 6 |
+
[program:web]
|
| 7 |
+
command=uvicorn app.main:app --host 0.0.0.0 --port 7860 --workers 1
|
| 8 |
+
directory=/app
|
| 9 |
+
stdout_logfile=/dev/stdout
|
| 10 |
+
stdout_logfile_maxbytes=0
|
| 11 |
+
stderr_logfile=/dev/stderr
|
| 12 |
+
stderr_logfile_maxbytes=0
|
| 13 |
+
environment=PYTHONUNBUFFERED=1,PYTHONDONTWRITEBYTECODE=1
|
| 14 |
+
|
| 15 |
+
[program:worker]
|
| 16 |
+
command=python worker/daemon.py
|
| 17 |
+
directory=/app
|
| 18 |
+
stdout_logfile=/dev/stdout
|
| 19 |
+
stdout_logfile_maxbytes=0
|
| 20 |
+
stderr_logfile=/dev/stderr
|
| 21 |
+
stderr_logfile_maxbytes=0
|
| 22 |
+
environment=PYTHONUNBUFFERED=1,PYTHONDONTWRITEBYTECODE=1
|