Spaces:
Runtime error
Runtime error
paudelanil
commited on
Commit
•
1f8d1c4
1
Parent(s):
90f0272
app update
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import tensorflow as tf
|
6 |
+
face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
7 |
+
# Load the Keras model
|
8 |
+
model = tf.keras.models.load_model("/home/anil/Documents/College Projects/EmotionClassifierHF/EmotionClassifier/affectnet_CNN_VGG_FIVEEMO_FINE_FINAL.h5")
|
9 |
+
|
10 |
+
# Mapping of emotion labels to their indices
|
11 |
+
emotion_label_dict = {
|
12 |
+
0: 'neutral',
|
13 |
+
1: 'happiness',
|
14 |
+
2: 'sadness',
|
15 |
+
3: 'surprise',
|
16 |
+
4: 'fear',
|
17 |
+
}
|
18 |
+
|
19 |
+
# Function to detect faces in an image
|
20 |
+
def detect_face(image):
|
21 |
+
img =image
|
22 |
+
face = face_detector.detectMultiScale(img, 1.1, 5, minSize=(40, 40))
|
23 |
+
|
24 |
+
if len(face) > 0:
|
25 |
+
x, y, w, h = face[0]
|
26 |
+
crop_img = img[y:y+h, x:x+w]
|
27 |
+
cropped = cv2.resize(crop_img, (224, 224))
|
28 |
+
img_rgb = cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB)
|
29 |
+
return img_rgb
|
30 |
+
else:
|
31 |
+
print("No face detected.")
|
32 |
+
return None
|
33 |
+
|
34 |
+
# Function to classify emotion using the loaded model
|
35 |
+
def classify_emotion(image):
|
36 |
+
# Preprocess the image
|
37 |
+
image = np.expand_dims(image, axis=0)
|
38 |
+
image = image / 255.0
|
39 |
+
|
40 |
+
# Make prediction using the model
|
41 |
+
predictions = model.predict(image)
|
42 |
+
emotion_index = np.argmax(predictions)
|
43 |
+
emotion_name = emotion_label_dict[emotion_index]
|
44 |
+
|
45 |
+
return emotion_name
|
46 |
+
|
47 |
+
# Streamlit app
|
48 |
+
def main():
|
49 |
+
st.title("Emotion Prediction App")
|
50 |
+
|
51 |
+
uploaded_file = st.file_uploader("Upload Image", type=["jpg", "png", "jpeg"])
|
52 |
+
|
53 |
+
if uploaded_file is not None:
|
54 |
+
image = Image.open(uploaded_file)
|
55 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
56 |
+
|
57 |
+
image_array = np.array(image)
|
58 |
+
detected_face = detect_face(image_array)
|
59 |
+
|
60 |
+
if detected_face is not None:
|
61 |
+
predicted_emotion = classify_emotion(detected_face)
|
62 |
+
st.write('Predicted Emotion:', predicted_emotion)
|
63 |
+
|
64 |
+
if __name__ == '__main__':
|
65 |
+
main()
|