Spaces:
Runtime error
Runtime error
import streamlit as st | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
import tensorflow as tf | |
face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') | |
# Load the Keras model | |
model = tf.keras.models.load_model("./affectnet_CNN_VGG_FIVEEMO_FINE_FINAL.h5") | |
# Mapping of emotion labels to their indices | |
emotion_label_dict = { | |
0: 'neutral', | |
1: 'happiness', | |
2: 'sadness', | |
3: 'surprise', | |
4: 'fear', | |
} | |
# Function to detect faces in an image | |
def detect_face(image): | |
img =image | |
face = face_detector.detectMultiScale(img, 1.1, 5, minSize=(40, 40)) | |
if len(face) > 0: | |
x, y, w, h = face[0] | |
crop_img = img[y:y+h, x:x+w] | |
cropped = cv2.resize(crop_img, (224, 224)) | |
img_rgb = cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB) | |
return img_rgb | |
else: | |
print("No face detected.") | |
return None | |
# Function to classify emotion using the loaded model | |
def classify_emotion(image): | |
# Preprocess the image | |
image = detect_face(image) | |
image = np.array(image) | |
image = np.expand_dims(image, axis=0) | |
# image = image / 255.0 | |
# Make prediction using the model | |
predictions = model.predict(image) | |
predictions = tf.nn.softmax(predictions) | |
print(predictions) | |
emotion_index = np.argmax(predictions) | |
emotion_name = emotion_label_dict[emotion_index] | |
return emotion_name | |
# Streamlit app | |
def main(): | |
st.title("Emotion Prediction App") | |
uploaded_file = st.file_uploader("Upload Image", type=["jpg", "png", "jpeg"]) | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
st.image(image, caption='Uploaded Image', use_column_width=True) | |
image_array = np.array(image) | |
detected_face = detect_face(image_array) | |
if detected_face is not None: | |
predicted_emotion = classify_emotion(detected_face) | |
st.write('Predicted Emotion:', predicted_emotion) | |
if __name__ == '__main__': | |
main() | |