Spaces:
Runtime error
Runtime error
import click | |
import numpy as np | |
import os | |
import tiktoken | |
from typing import List, Tuple | |
import requests | |
from dotenv import load_dotenv | |
from sentence_transformers import SentenceTransformer | |
from langchain_community.chat_models import ChatOllama | |
from basesrc.strategies import convert_pdf_to_text, split_pages_into_chunks, vectorize | |
from prompt_query import generate_prompt | |
# load_dotenv() | |
# CACHE_FOLDER = os.environ["CACHE_FOLDER"] | |
CACHE_FOLDER = None #"./cache" # si toutefois (¨_^) | |
def main(pdf_url:str, pdf_path:str, embedding_model:str, llm_model:str, top_k:int): | |
#os.makedirs(CACHE_FOLDER, exist_ok=True) | |
response = requests.get(pdf_url) | |
with open(pdf_path, 'wb') as f: | |
f.write(response.content) | |
pages = convert_pdf_to_text(pdf_path) | |
print( | |
""" | |
Je suis Llama3, de l'équipe DREAMS TEAM, votre assistant QA pour répondre à vos questions liés aux documents 🙂 ! | |
Déjà pour info, le nombre de pages de vote document est: """, len(pages) | |
) | |
tokenizer = tiktoken.get_encoding("cl100k_base") | |
chunks = split_pages_into_chunks(pages, 128, tokenizer) | |
embedding_model = SentenceTransformer(embedding_model) | |
knowledge_base = vectorize(chunks, embedding_model) | |
chunks, embeddings = list(zip(*knowledge_base)) | |
corpus_embeddings = np.vstack(embeddings) | |
llm_model = ChatOllama(model=llm_model) | |
print('📑 Voici le contenu de la première page du document 😎:\n', pages[0]) | |
keep_looping = True | |
while keep_looping: | |
try: | |
question = input("Entrez votre question ✍️ | (ou tapez 'exit' pour quitter) ✨: ") | |
if question.lower() == 'exit': | |
break | |
response = generate_prompt(question, chunks, corpus_embeddings, embedding_model, llm_model, top_k) | |
colored_response = f"Llama3 : {response}" # la réponse de Llama | |
print(colored_response) | |
except KeyboardInterrupt: | |
print("\nFin de la session de chat 👋.") | |
keep_looping = False | |
if __name__ == "__main__": | |
main() | |
""" | |
export CACHE_FOLDER="./cache" | |
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python3 | |
python main.py --pdf_url "https://hellofuture.orange.com/app/uploads/2024/05/2024-Orange-white-paper-on-Mobile-Network-Technology-Evolutions-Beyond-2030.pdf" --embedding_model "Sahajtomar/french_semantic" --llm_model "llama3" --top_k 5 | |
""" |