Spaces:
Running
Running
| from fastapi import FastAPI, Response, status | |
| from pydantic import BaseModel | |
| from hypothesis import BaseModelHypothesis | |
| from random_forest_dependencies import RandomForestDependencies | |
| from random_forest_model import RandomForestModel | |
| from main_model import PredictMainModel | |
| import numpy as np | |
| from typing import List | |
| app = FastAPI() | |
| class PredictRequest(BaseModel): | |
| question: str | |
| answer: str | |
| backspace_count: int | |
| typing_duration: int | |
| letter_click_counts: dict[str, int] | |
| class RequestModel(BaseModel): | |
| instances: List[PredictRequest] | |
| async def is_alive(): | |
| return Response(status_code=status.HTTP_200_OK) | |
| async def predict(request: RequestModel): | |
| responses = [process_instance(data) for data in request.instances] | |
| return {"predictions": responses} | |
| def process_instance(data: PredictRequest): | |
| question = data.question | |
| answer = data.answer | |
| backspace_count = data.backspace_count | |
| typing_duration = data.typing_duration | |
| letter_click_counts = data.letter_click_counts | |
| # Data preparation for 1st model | |
| hypothesis = BaseModelHypothesis() | |
| additional_features = hypothesis.calculate_features_dataframe(answer) | |
| # 1st model prediction | |
| main_model = PredictMainModel() | |
| main_model_probability = main_model.predict( | |
| answer, additional_features) | |
| # Data preparation for 2nd model | |
| random_forest_features = RandomForestDependencies() | |
| secondary_model_features = random_forest_features.calculate_features( | |
| answer, main_model_probability, backspace_count, typing_duration, letter_click_counts) | |
| # 2nd model prediction | |
| secondary_model = RandomForestModel() | |
| secondary_model_prediction = secondary_model.predict( | |
| secondary_model_features) | |
| return { | |
| "predicted_class": "AI" if secondary_model_prediction == 1 else "HUMAN", | |
| "details": { | |
| "main_model_probability": str(main_model_probability), | |
| "final_prediction": secondary_model_prediction | |
| } | |
| } | |