import gradio as gr import tempfile import json from inference_focal_length import load_models, run_inference, OmegaConf import torch # Initialize models once at startup cfg = OmegaConf.load("configs/inference_genphoto/adv3_256_384_genphoto_relora_focal_length.yaml") pipeline, device = load_models(cfg) def generate_video(base_scene, focal_length_list): try: # Validate input if len(json.loads(focal_length_list)) != 5: raise ValueError("Exactly 5 focal_length values required") # Run inference video_path = run_inference( pipeline=pipeline, tokenizer=pipeline.tokenizer, text_encoder=pipeline.text_encoder, base_scene=base_scene, focal_length_list=focal_length_list, device=device ) return video_path except Exception as e: raise gr.Error(f"Generation failed: {str(e)}") # Example inputs examples = [ [ "A small office cubicle with a desk, computer, and chair.", "[25.1, 36.1, 47.1, 58.1, 69.1]" ], [ "A large, white couch is placed in a living room, with a mirror above it. The couch is covered with various items, including a blue box, a pink towel, and a pair of shoes.", "[55.0, 46.0, 37.0, 28.0, 25.0]" ] ] with gr.Blocks(title="Focal Length Effect Generator") as demo: gr.Markdown("#Dynamic Focal Length Effect Generation") with gr.Row(): with gr.Column(): scene_input = gr.Textbox( label="Scene Description", placeholder="Describe the scene you want to generate..." ) focal_length_input = gr.Textbox( label="Focal Length Values", placeholder="Enter 5 comma-separated values from 24-70 (e.g., [25.1, 30.2, 33.3, 40.8, 54.0])" ) submit_btn = gr.Button("Generate Video", variant="primary") with gr.Column(): video_output = gr.Video(label="Generated Video") error_output = gr.Textbox(label="Error Messages", visible=False) gr.Examples( examples=examples, inputs=[scene_input, focal_length_input], outputs=[video_output], fn=generate_video, cache_examples=True ) submit_btn.click( fn=generate_video, inputs=[scene_input, focal_length_input], outputs=[video_output], ) if __name__ == "__main__": demo.launch(share=True)