Spaces:
Running
on
Zero
Running
on
Zero
import tempfile | |
import imageio | |
import os | |
import torch | |
import logging | |
import argparse | |
import json | |
import numpy as np | |
import torch.nn.functional as F | |
from pathlib import Path | |
from omegaconf import OmegaConf | |
from torch.utils.data import Dataset | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from ddiffusers import AutoencoderKL, DDIMScheduler | |
from einops import rearrange | |
from genphoto.pipelines.pipeline_animation import GenPhotoPipeline | |
from genphoto.models.unet import UNet3DConditionModelCameraCond | |
from genphoto.models.camera_adaptor import CameraCameraEncoder, CameraAdaptor | |
from genphoto.utils.util import save_videos_grid | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
def create_shutter_speed_embedding(shutter_speed_values, target_height, target_width, base_exposure=0.5): | |
""" | |
Create a shutter_speed (Exposure Value or shutter speed) embedding tensor using a constant fwc value. | |
Args: | |
- shutter_speed_values: Tensor of shape [f, 1] containing shutter_speed values for each frame. | |
- H: Height of the image. | |
- W: Width of the image. | |
- base_exposure: A base exposure value to normalize brightness (defaults to 0.18 as a common base exposure level). | |
Returns: | |
- shutter_speed_embedding: Tensor of shape [f, 1, H, W] where each pixel is scaled based on the shutter_speed values. | |
""" | |
f = shutter_speed_values.shape[0] | |
# Set a constant full well capacity (fwc) | |
fwc = 32000 # Constant value for full well capacity | |
# Calculate scale based on EV and sensor full well capacity (fwc) | |
scales = (shutter_speed_values / base_exposure) * (fwc / (fwc + 0.0001)) | |
# Reshape and expand to match image dimensions | |
scales = scales.unsqueeze(2).unsqueeze(3).expand(f, 3, target_height, target_width) | |
# Use scales to create the final shutter_speed embedding | |
shutter_speed_embedding = scales # Shape [f, 3, H, W] | |
return shutter_speed_embedding | |
class Camera_Embedding(Dataset): | |
def __init__(self, shutter_speed_values, tokenizer, text_encoder, device, sample_size=[256, 384]): | |
self.shutter_speed_values = shutter_speed_values.to(device) | |
self.tokenizer = tokenizer | |
self.text_encoder = text_encoder | |
self.device = device | |
self.sample_size = sample_size | |
def load(self): | |
if len(self.shutter_speed_values) != 5: | |
raise ValueError("Expected 5 shutter_speed values") | |
# Generate prompts for each shutter_speed value and append shutter_speed information to caption | |
prompts = [] | |
for ss in self.shutter_speed_values: | |
prompt = f"<exposure: {ss.item()}>" | |
prompts.append(prompt) | |
# Tokenize prompts and encode to get embeddings | |
with torch.no_grad(): | |
prompt_ids = self.tokenizer( | |
prompts, max_length=self.tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" | |
).input_ids.to(self.device) | |
encoder_hidden_states = self.text_encoder(input_ids=prompt_ids).last_hidden_state # Shape: (f, sequence_length, hidden_size) | |
# Calculate differences between consecutive embeddings (ignoring sequence_length) | |
differences = [] | |
for i in range(1, encoder_hidden_states.size(0)): | |
diff = encoder_hidden_states[i] - encoder_hidden_states[i - 1] | |
diff = diff.unsqueeze(0) | |
differences.append(diff) | |
# Add the difference between the last and the first embedding | |
final_diff = encoder_hidden_states[-1] - encoder_hidden_states[0] | |
final_diff = final_diff.unsqueeze(0) | |
differences.append(final_diff) | |
# Concatenate differences along the batch dimension (f-1) | |
concatenated_differences = torch.cat(differences, dim=0) | |
frame = concatenated_differences.size(0) | |
concatenated_differences = torch.cat(differences, dim=0) | |
pad_length = 128 - concatenated_differences.size(1) | |
print('pad_length', pad_length) | |
if pad_length > 0: | |
concatenated_differences_padded = F.pad(concatenated_differences, (0, 0, 0, pad_length)) | |
ccl_embedding = concatenated_differences_padded.reshape(frame, self.sample_size[0], self.sample_size[1]) | |
ccl_embedding = ccl_embedding.unsqueeze(1) | |
ccl_embedding = ccl_embedding.expand(-1, 3, -1, -1) | |
ccl_embedding = ccl_embedding.to(self.device) | |
shutter_speed_embedding = create_shutter_speed_embedding(self.shutter_speed_values, self.sample_size[0], self.sample_size[1]).to(self.device) | |
camera_embedding = torch.cat((shutter_speed_embedding, ccl_embedding), dim=1) | |
return camera_embedding | |
def load_models(cfg): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
noise_scheduler = DDIMScheduler(**OmegaConf.to_container(cfg.noise_scheduler_kwargs)) | |
vae = AutoencoderKL.from_pretrained(cfg.pretrained_model_path, subfolder="vae").to(device) | |
vae.requires_grad_(False) | |
tokenizer = CLIPTokenizer.from_pretrained(cfg.pretrained_model_path, subfolder="tokenizer") | |
text_encoder = CLIPTextModel.from_pretrained(cfg.pretrained_model_path, subfolder="text_encoder").to(device) | |
text_encoder.requires_grad_(False) | |
unet = UNet3DConditionModelCameraCond.from_pretrained_2d( | |
cfg.pretrained_model_path, | |
subfolder=cfg.unet_subfolder, | |
unet_additional_kwargs=cfg.unet_additional_kwargs | |
).to(device) | |
unet.requires_grad_(False) | |
camera_encoder = CameraCameraEncoder(**cfg.camera_encoder_kwargs).to(device) | |
camera_encoder.requires_grad_(False) | |
camera_adaptor = CameraAdaptor(unet, camera_encoder) | |
camera_adaptor.requires_grad_(False) | |
camera_adaptor.to(device) | |
logger.info("Setting the attention processors") | |
unet.set_all_attn_processor( | |
add_spatial_lora=cfg.lora_ckpt is not None, | |
add_motion_lora=cfg.motion_lora_rank > 0, | |
lora_kwargs={"lora_rank": cfg.lora_rank, "lora_scale": cfg.lora_scale}, | |
motion_lora_kwargs={"lora_rank": cfg.motion_lora_rank, "lora_scale": cfg.motion_lora_scale}, | |
**cfg.attention_processor_kwargs | |
) | |
if cfg.lora_ckpt is not None: | |
print(f"Loading the lora checkpoint from {cfg.lora_ckpt}") | |
lora_checkpoints = torch.load(cfg.lora_ckpt, map_location=unet.device) | |
if 'lora_state_dict' in lora_checkpoints.keys(): | |
lora_checkpoints = lora_checkpoints['lora_state_dict'] | |
_, lora_u = unet.load_state_dict(lora_checkpoints, strict=False) | |
assert len(lora_u) == 0 | |
print(f'Loading done') | |
if cfg.motion_module_ckpt is not None: | |
print(f"Loading the motion module checkpoint from {cfg.motion_module_ckpt}") | |
mm_checkpoints = torch.load(cfg.motion_module_ckpt, map_location=unet.device) | |
_, mm_u = unet.load_state_dict(mm_checkpoints, strict=False) | |
assert len(mm_u) == 0 | |
print("Loading done") | |
# 🔥 加载 Camera Adaptor Checkpoint | |
if cfg.camera_adaptor_ckpt is not None: | |
logger.info(f"Loading camera adaptor from {cfg.camera_adaptor_ckpt}") | |
camera_adaptor_checkpoint = torch.load(cfg.camera_adaptor_ckpt, map_location=device) | |
# 加载 Camera Encoder | |
camera_encoder_state_dict = camera_adaptor_checkpoint['camera_encoder_state_dict'] | |
attention_processor_state_dict = camera_adaptor_checkpoint['attention_processor_state_dict'] | |
camera_enc_m, camera_enc_u = camera_adaptor.camera_encoder.load_state_dict(camera_encoder_state_dict, strict=False) | |
assert len(camera_enc_m) == 0 and len(camera_enc_u) == 0 | |
_, attention_processor_u = camera_adaptor.unet.load_state_dict(attention_processor_state_dict, strict=False) | |
assert len(attention_processor_u) == 0 | |
logger.info("Camera Adaptor loading done") | |
else: | |
logger.info("No Camera Adaptor checkpoint used") | |
pipeline = GenPhotoPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=noise_scheduler, | |
camera_encoder=camera_encoder | |
).to(device) | |
pipeline.enable_vae_slicing() | |
return pipeline, device | |
def run_inference(pipeline, tokenizer, text_encoder, base_scene, shutter_speed_list, device, video_length=5, height=256, width=384): | |
shutter_speed_values = json.loads(shutter_speed_list) | |
shutter_speed_values = torch.tensor(shutter_speed_values).unsqueeze(1) | |
# Ensure camera_embedding is on the correct device | |
camera_embedding = Camera_Embedding(shutter_speed_values, tokenizer, text_encoder, device).load() | |
camera_embedding = rearrange(camera_embedding.unsqueeze(0), "b f c h w -> b c f h w") | |
with torch.no_grad(): | |
sample = pipeline( | |
prompt=base_scene, | |
camera_embedding=camera_embedding, | |
video_length=video_length, | |
height=height, | |
width=width, | |
num_inference_steps=25, | |
guidance_scale=8.0 | |
).videos[0].cpu() | |
temporal_video_path = tempfile.NamedTemporaryFile(suffix='.mp4').name | |
save_videos_grid(sample[None], temporal_video_path, rescale=False) | |
return temporal_video_path | |
def main(config_path, base_scene, shutter_speed_list): | |
torch.manual_seed(42) | |
cfg = OmegaConf.load(config_path) | |
logger.info("Loading models...") | |
pipeline, device = load_models(cfg) | |
logger.info("Starting inference...") | |
video_path = run_inference(pipeline, pipeline.tokenizer, pipeline.text_encoder, base_scene, shutter_speed_list, device) | |
logger.info(f"Video saved to {video_path}") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--config", type=str, required=True, help="Path to YAML configuration file") | |
parser.add_argument("--base_scene", type=str, required=True, help="invariant scene caption as JSON string") | |
parser.add_argument("--shutter_speed_list", type=str, required=True, help="shutter_speed values as JSON string") | |
args = parser.parse_args() | |
main(args.config, args.base_scene, args.shutter_speed_list) | |
# usage example | |
# python inference_shutter_speed.py --config configs/inference_genphoto/adv3_256_384_genphoto_relora_shutter_speed.yaml --base_scene "A modern bathroom with a mirror and soft lighting." --shutter_speed_list "[0.1, 0.3, 0.52, 0.7, 0.8]" | |