Spaces:
Sleeping
Sleeping
Commit
·
8a0c93a
1
Parent(s):
45eb819
Update utils.py
Browse files
utils.py
CHANGED
|
@@ -50,49 +50,6 @@ def create_embeddings_load_data():
|
|
| 50 |
return embeddings
|
| 51 |
|
| 52 |
|
| 53 |
-
#Function to push data to Vector Store - Pinecone here
|
| 54 |
-
def push_to_pinecone(pinecone_apikey,pinecone_environment,pinecone_index_name,embeddings,docs):
|
| 55 |
-
|
| 56 |
-
pinecone.init(
|
| 57 |
-
api_key=pinecone_apikey,
|
| 58 |
-
environment=pinecone_environment
|
| 59 |
-
)
|
| 60 |
-
print("done......2")
|
| 61 |
-
Pinecone.from_documents(docs, embeddings, index_name=pinecone_index_name)
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
#Function to pull infrmation from Vector Store - Pinecone here
|
| 66 |
-
def pull_from_pinecone(pinecone_apikey,pinecone_environment,pinecone_index_name,embeddings):
|
| 67 |
-
|
| 68 |
-
pinecone.init(
|
| 69 |
-
api_key=pinecone_apikey,
|
| 70 |
-
environment=pinecone_environment
|
| 71 |
-
)
|
| 72 |
-
|
| 73 |
-
index_name = pinecone_index_name
|
| 74 |
-
|
| 75 |
-
index = Pinecone.from_existing_index(index_name, embeddings)
|
| 76 |
-
return index
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
#Function to help us get relavant documents from vector store - based on user input
|
| 81 |
-
def similar_docs(query,k,pinecone_apikey,pinecone_environment,pinecone_index_name,embeddings,unique_id):
|
| 82 |
-
|
| 83 |
-
pinecone.init(
|
| 84 |
-
api_key=pinecone_apikey,
|
| 85 |
-
environment=pinecone_environment
|
| 86 |
-
)
|
| 87 |
-
|
| 88 |
-
index_name = pinecone_index_name
|
| 89 |
-
|
| 90 |
-
index = pull_from_pinecone(pinecone_apikey,pinecone_environment,index_name,embeddings)
|
| 91 |
-
#similar_docs = index.similarity_search_with_score(query, int(k),{"unique_id":unique_id})
|
| 92 |
-
similar_docs = index.similarity_search_with_score(query, int(k))
|
| 93 |
-
#print(similar_docs)
|
| 94 |
-
return similar_docs
|
| 95 |
-
|
| 96 |
def close_matches(query,k,docs,embeddings):
|
| 97 |
#https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.faiss.FAISS.html#langchain.vectorstores.faiss.FAISS.similarity_search_with_score
|
| 98 |
db = FAISS.from_documents(docs, embeddings)
|
|
|
|
| 50 |
return embeddings
|
| 51 |
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
def close_matches(query,k,docs,embeddings):
|
| 54 |
#https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.faiss.FAISS.html#langchain.vectorstores.faiss.FAISS.similarity_search_with_score
|
| 55 |
db = FAISS.from_documents(docs, embeddings)
|