Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.vectorstores import Pinecone | |
| from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings | |
| import pinecone | |
| import asyncio | |
| from langchain.document_loaders.sitemap import SitemapLoader | |
| #Function to fetch data from website | |
| #https://python.langchain.com/docs/modules/data_connection/document_loaders/integrations/sitemap | |
| def get_website_data(sitemap_url): | |
| loop = asyncio.new_event_loop() | |
| asyncio.set_event_loop(loop) | |
| loader = SitemapLoader( | |
| sitemap_url | |
| ) | |
| docs = loader.load() | |
| return docs | |
| #Function to split data into smaller chunks | |
| def split_data(docs): | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| chunk_size = 1000, | |
| chunk_overlap = 200, | |
| length_function = len, | |
| ) | |
| docs_chunks = text_splitter.split_documents(docs) | |
| return docs_chunks | |
| #Function to create embeddings instance | |
| def create_embeddings(): | |
| embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") | |
| return embeddings | |
| #Function to push data to Pinecone | |
| def push_to_pinecone(pinecone_apikey,pinecone_environment,pinecone_index_name,embeddings,docs): | |
| pinecone.init( | |
| api_key=pinecone_apikey, | |
| environment=pinecone_environment | |
| ) | |
| index_name = pinecone_index_name | |
| index = Pinecone.from_documents(docs, embeddings, index_name=index_name) | |
| return index | |
| #Function to pull index data from Pinecone | |
| def pull_from_pinecone(pinecone_apikey,pinecone_environment,pinecone_index_name,embeddings): | |
| pinecone.init( | |
| api_key=pinecone_apikey, | |
| environment=pinecone_environment | |
| ) | |
| index_name = pinecone_index_name | |
| index = Pinecone.from_existing_index(index_name, embeddings) | |
| return index | |
| #This function will help us in fetching the top relevent documents from our vector store - Pinecone Index | |
| def get_similar_docs(index,query,k=2): | |
| similar_docs = index.similarity_search(query, k=k) | |
| return similar_docs | |