Spaces:
Running
on
Zero
Running
on
Zero
feat: init tkg
Browse files- .python-version +1 -0
- app.py +104 -45
- pyproject.toml +21 -0
- requirements.txt +2 -2
- tkg.py +117 -0
- uv.lock +0 -0
.python-version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
3.10
|
app.py
CHANGED
|
@@ -1,36 +1,44 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
import random
|
| 4 |
|
| 5 |
-
|
| 6 |
-
from diffusers import DiffusionPipeline
|
| 7 |
import torch
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
-
model_repo_id = "
|
| 11 |
|
| 12 |
-
if torch.cuda.is_available():
|
| 13 |
-
torch_dtype = torch.float16
|
| 14 |
-
else:
|
| 15 |
-
torch_dtype = torch.float32
|
| 16 |
|
| 17 |
-
pipe =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
pipe = pipe.to(device)
|
| 19 |
|
| 20 |
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
-
MAX_IMAGE_SIZE =
|
| 22 |
|
| 23 |
-
|
| 24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
| 25 |
def infer(
|
| 26 |
-
prompt,
|
| 27 |
-
negative_prompt,
|
| 28 |
-
seed,
|
| 29 |
-
randomize_seed,
|
| 30 |
-
width,
|
| 31 |
-
height,
|
| 32 |
-
guidance_scale,
|
| 33 |
-
num_inference_steps,
|
|
|
|
| 34 |
progress=gr.Progress(track_tqdm=True),
|
| 35 |
):
|
| 36 |
if randomize_seed:
|
|
@@ -38,7 +46,27 @@ def infer(
|
|
| 38 |
|
| 39 |
generator = torch.Generator().manual_seed(seed)
|
| 40 |
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
prompt=prompt,
|
| 43 |
negative_prompt=negative_prompt,
|
| 44 |
guidance_scale=guidance_scale,
|
|
@@ -46,27 +74,55 @@ def infer(
|
|
| 46 |
width=width,
|
| 47 |
height=height,
|
| 48 |
generator=generator,
|
| 49 |
-
).images
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
examples = [
|
| 55 |
-
"
|
| 56 |
-
"
|
| 57 |
-
"A delicious ceviche cheesecake slice",
|
| 58 |
]
|
| 59 |
|
| 60 |
-
css = """
|
| 61 |
-
#col-container {
|
| 62 |
-
margin: 0 auto;
|
| 63 |
-
max-width: 640px;
|
| 64 |
-
}
|
| 65 |
-
"""
|
| 66 |
|
| 67 |
-
with gr.Blocks(
|
| 68 |
-
with gr.Column(
|
| 69 |
-
gr.Markdown("
|
| 70 |
|
| 71 |
with gr.Row():
|
| 72 |
prompt = gr.Text(
|
|
@@ -79,14 +135,16 @@ with gr.Blocks(css=css) as demo:
|
|
| 79 |
|
| 80 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
| 81 |
|
| 82 |
-
|
|
|
|
|
|
|
| 83 |
|
| 84 |
with gr.Accordion("Advanced Settings", open=False):
|
| 85 |
negative_prompt = gr.Text(
|
| 86 |
label="Negative prompt",
|
| 87 |
max_lines=1,
|
| 88 |
placeholder="Enter a negative prompt",
|
| 89 |
-
|
| 90 |
)
|
| 91 |
|
| 92 |
seed = gr.Slider(
|
|
@@ -105,7 +163,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 105 |
minimum=256,
|
| 106 |
maximum=MAX_IMAGE_SIZE,
|
| 107 |
step=32,
|
| 108 |
-
value=
|
| 109 |
)
|
| 110 |
|
| 111 |
height = gr.Slider(
|
|
@@ -113,7 +171,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 113 |
minimum=256,
|
| 114 |
maximum=MAX_IMAGE_SIZE,
|
| 115 |
step=32,
|
| 116 |
-
value=
|
| 117 |
)
|
| 118 |
|
| 119 |
with gr.Row():
|
|
@@ -122,7 +180,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 122 |
minimum=0.0,
|
| 123 |
maximum=10.0,
|
| 124 |
step=0.1,
|
| 125 |
-
value=
|
| 126 |
)
|
| 127 |
|
| 128 |
num_inference_steps = gr.Slider(
|
|
@@ -130,10 +188,11 @@ with gr.Blocks(css=css) as demo:
|
|
| 130 |
minimum=1,
|
| 131 |
maximum=50,
|
| 132 |
step=1,
|
| 133 |
-
value=
|
| 134 |
)
|
| 135 |
|
| 136 |
gr.Examples(examples=examples, inputs=[prompt])
|
|
|
|
| 137 |
gr.on(
|
| 138 |
triggers=[run_button.click, prompt.submit],
|
| 139 |
fn=infer,
|
|
@@ -147,7 +206,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 147 |
guidance_scale,
|
| 148 |
num_inference_steps,
|
| 149 |
],
|
| 150 |
-
outputs=[
|
| 151 |
)
|
| 152 |
|
| 153 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
| 1 |
import random
|
| 2 |
|
| 3 |
+
import numpy as np
|
|
|
|
| 4 |
import torch
|
| 5 |
|
| 6 |
+
from diffusers import StableDiffusionXLPipeline
|
| 7 |
+
import spaces
|
| 8 |
+
|
| 9 |
+
import gradio as gr
|
| 10 |
+
|
| 11 |
+
from .tkg import apply_tkg_noise, COLOR_SET_MAP
|
| 12 |
+
|
| 13 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 14 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 15 |
+
|
| 16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
+
model_repo_id = "cagliostrolab/animagine-xl-4.0" # Replace to the model you would like to use
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 21 |
+
"cagliostrolab/animagine-xl-4.0",
|
| 22 |
+
torch_dtype=torch.bfloat16,
|
| 23 |
+
custom_pipeline="lpw_stable_diffusion_xl",
|
| 24 |
+
add_watermarker=False,
|
| 25 |
+
)
|
| 26 |
pipe = pipe.to(device)
|
| 27 |
|
| 28 |
MAX_SEED = np.iinfo(np.int32).max
|
| 29 |
+
MAX_IMAGE_SIZE = 2048
|
| 30 |
|
| 31 |
+
@spaces.GPU
|
|
|
|
| 32 |
def infer(
|
| 33 |
+
prompt: str,
|
| 34 |
+
negative_prompt: str,
|
| 35 |
+
seed: int,
|
| 36 |
+
randomize_seed: bool,
|
| 37 |
+
width: int,
|
| 38 |
+
height: int,
|
| 39 |
+
guidance_scale: float,
|
| 40 |
+
num_inference_steps: int,
|
| 41 |
+
tkg_channels: list[int] = [0, 1, 1, 0],
|
| 42 |
progress=gr.Progress(track_tqdm=True),
|
| 43 |
):
|
| 44 |
if randomize_seed:
|
|
|
|
| 46 |
|
| 47 |
generator = torch.Generator().manual_seed(seed)
|
| 48 |
|
| 49 |
+
latents = torch.randn(
|
| 50 |
+
(
|
| 51 |
+
1,
|
| 52 |
+
2,
|
| 53 |
+
height // 8,
|
| 54 |
+
width // 8,
|
| 55 |
+
),
|
| 56 |
+
generator=generator,
|
| 57 |
+
device=device,
|
| 58 |
+
)
|
| 59 |
+
latents = apply_tkg_noise(
|
| 60 |
+
latents,
|
| 61 |
+
shift=0.11,
|
| 62 |
+
delta_shift=0.1,
|
| 63 |
+
std_dev=0.5,
|
| 64 |
+
factor=8,
|
| 65 |
+
channels=tkg_channels,
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
images = pipe(
|
| 69 |
+
latents=latents,
|
| 70 |
prompt=prompt,
|
| 71 |
negative_prompt=negative_prompt,
|
| 72 |
guidance_scale=guidance_scale,
|
|
|
|
| 74 |
width=width,
|
| 75 |
height=height,
|
| 76 |
generator=generator,
|
| 77 |
+
).images
|
| 78 |
+
|
| 79 |
+
w_tkg, wo_tkg = images
|
| 80 |
+
|
| 81 |
+
return w_tkg, wo_tkg, seed
|
| 82 |
+
|
| 83 |
+
def color_name_to_channels(color_name: str) -> list[int]:
|
| 84 |
+
if color_name in COLOR_SET_MAP:
|
| 85 |
+
return COLOR_SET_MAP[color_name]
|
| 86 |
+
else:
|
| 87 |
+
raise ValueError(f"Unknown color name: {color_name}")
|
| 88 |
+
|
| 89 |
+
def on_generate(
|
| 90 |
+
prompt: str,
|
| 91 |
+
negative_prompt: str,
|
| 92 |
+
seed: int,
|
| 93 |
+
randomize_seed: bool,
|
| 94 |
+
width: int,
|
| 95 |
+
height: int,
|
| 96 |
+
guidance_scale: float,
|
| 97 |
+
num_inference_steps: int,
|
| 98 |
+
color_name: str,
|
| 99 |
+
*args,
|
| 100 |
+
**kwargs
|
| 101 |
+
):
|
| 102 |
+
tkg_channels = color_name_to_channels(color_name)
|
| 103 |
+
# TODO: custom channels
|
| 104 |
+
|
| 105 |
+
return infer(
|
| 106 |
+
prompt,
|
| 107 |
+
negative_prompt,
|
| 108 |
+
seed,
|
| 109 |
+
randomize_seed,
|
| 110 |
+
width,
|
| 111 |
+
height,
|
| 112 |
+
guidance_scale,
|
| 113 |
+
num_inference_steps,
|
| 114 |
+
tkg_channels=tkg_channels,
|
| 115 |
+
)
|
| 116 |
|
| 117 |
examples = [
|
| 118 |
+
# "1girl, arima kana, oshi no ko, hoshimachi suisei, hoshimachi suisei \(1st costume\), cosplay, looking at viewer, smile, outdoors, night, v, masterpiece, high score, great score, absurdres",
|
| 119 |
+
"1girl, solo, upper body, looking at viewer, straight-on, masterpiece, best quality",
|
|
|
|
| 120 |
]
|
| 121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
+
with gr.Blocks() as demo:
|
| 124 |
+
with gr.Column():
|
| 125 |
+
gr.Markdown("# TKG Chroma-Key with AnimagineXL 4.0")
|
| 126 |
|
| 127 |
with gr.Row():
|
| 128 |
prompt = gr.Text(
|
|
|
|
| 135 |
|
| 136 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
| 137 |
|
| 138 |
+
with gr.Row():
|
| 139 |
+
result_w_tkg = gr.Image(label="Result", show_label=False)
|
| 140 |
+
result_wo_tkg = gr.Image(label="Result", show_label=False)
|
| 141 |
|
| 142 |
with gr.Accordion("Advanced Settings", open=False):
|
| 143 |
negative_prompt = gr.Text(
|
| 144 |
label="Negative prompt",
|
| 145 |
max_lines=1,
|
| 146 |
placeholder="Enter a negative prompt",
|
| 147 |
+
default="lowres, bad anatomy, bad hands, text, error, missing finger, extra digits, fewer digits, cropped, worst quality, low quality, low score, bad score, average score, signature, watermark, username, blurry",
|
| 148 |
)
|
| 149 |
|
| 150 |
seed = gr.Slider(
|
|
|
|
| 163 |
minimum=256,
|
| 164 |
maximum=MAX_IMAGE_SIZE,
|
| 165 |
step=32,
|
| 166 |
+
value=832,
|
| 167 |
)
|
| 168 |
|
| 169 |
height = gr.Slider(
|
|
|
|
| 171 |
minimum=256,
|
| 172 |
maximum=MAX_IMAGE_SIZE,
|
| 173 |
step=32,
|
| 174 |
+
value=1152,
|
| 175 |
)
|
| 176 |
|
| 177 |
with gr.Row():
|
|
|
|
| 180 |
minimum=0.0,
|
| 181 |
maximum=10.0,
|
| 182 |
step=0.1,
|
| 183 |
+
value=5.0,
|
| 184 |
)
|
| 185 |
|
| 186 |
num_inference_steps = gr.Slider(
|
|
|
|
| 188 |
minimum=1,
|
| 189 |
maximum=50,
|
| 190 |
step=1,
|
| 191 |
+
value=25,
|
| 192 |
)
|
| 193 |
|
| 194 |
gr.Examples(examples=examples, inputs=[prompt])
|
| 195 |
+
|
| 196 |
gr.on(
|
| 197 |
triggers=[run_button.click, prompt.submit],
|
| 198 |
fn=infer,
|
|
|
|
| 206 |
guidance_scale,
|
| 207 |
num_inference_steps,
|
| 208 |
],
|
| 209 |
+
outputs=[result_w_tkg, result_wo_tkg, seed],
|
| 210 |
)
|
| 211 |
|
| 212 |
if __name__ == "__main__":
|
pyproject.toml
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[project]
|
| 2 |
+
name = "app"
|
| 3 |
+
version = "0.1.0"
|
| 4 |
+
description = "Add your description here"
|
| 5 |
+
readme = "README.md"
|
| 6 |
+
requires-python = ">=3.10,<3.13"
|
| 7 |
+
dependencies = [
|
| 8 |
+
"accelerate>=1.10.0",
|
| 9 |
+
"diffusers>=0.35.1",
|
| 10 |
+
"spaces>=0.40.1",
|
| 11 |
+
"torch>=2.8.0",
|
| 12 |
+
"transformers>=4.55.4",
|
| 13 |
+
"xformers>=0.0.32.post2",
|
| 14 |
+
]
|
| 15 |
+
|
| 16 |
+
[dependency-groups]
|
| 17 |
+
dev = [
|
| 18 |
+
"gradio>=5.43.1",
|
| 19 |
+
"ruff>=0.12.10",
|
| 20 |
+
"ty>=0.0.1a19",
|
| 21 |
+
]
|
requirements.txt
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
accelerate
|
| 2 |
diffusers
|
| 3 |
-
invisible_watermark
|
| 4 |
torch
|
| 5 |
transformers
|
| 6 |
-
xformers
|
|
|
|
|
|
| 1 |
accelerate
|
| 2 |
diffusers
|
|
|
|
| 3 |
torch
|
| 4 |
transformers
|
| 5 |
+
xformers
|
| 6 |
+
spaces
|
tkg.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import NamedTuple
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def get_mean_shifted_latents(
|
| 8 |
+
latents: torch.Tensor,
|
| 9 |
+
shift: float = 0.11,
|
| 10 |
+
delta_shift: float = 0.1,
|
| 11 |
+
channels: list[int] = [0, 1, 1, 0], # list of {-1, 0, 1}
|
| 12 |
+
) -> torch.Tensor:
|
| 13 |
+
shifted_latents = latents.clone()
|
| 14 |
+
|
| 15 |
+
for idx, sign in enumerate(channels):
|
| 16 |
+
if sign == 0:
|
| 17 |
+
# skip
|
| 18 |
+
continue
|
| 19 |
+
|
| 20 |
+
latent_channel = shifted_latents[:, idx, :, :]
|
| 21 |
+
|
| 22 |
+
positive_ratio = (latent_channel > 0).float().mean()
|
| 23 |
+
target_ratio = positive_ratio + shift * sign
|
| 24 |
+
|
| 25 |
+
# gradually shift latent_channel
|
| 26 |
+
while True:
|
| 27 |
+
latent_channel += delta_shift * sign
|
| 28 |
+
new_positive_ratio = (latent_channel > 0).float().mean()
|
| 29 |
+
if new_positive_ratio >= target_ratio:
|
| 30 |
+
break
|
| 31 |
+
|
| 32 |
+
# replace the channel in the original latents
|
| 33 |
+
shifted_latents[:, idx, :, :] = latent_channel
|
| 34 |
+
|
| 35 |
+
return shifted_latents
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def get_2d_gaussian(
|
| 39 |
+
latent_height: int,
|
| 40 |
+
latent_width: int,
|
| 41 |
+
std_dev: float,
|
| 42 |
+
device: torch.device,
|
| 43 |
+
center_x: float = 0.0,
|
| 44 |
+
center_y: float = 0.0,
|
| 45 |
+
factor: int = 8, # idk why
|
| 46 |
+
):
|
| 47 |
+
y = torch.linspace(-1, 1, steps=latent_height // factor, device=device)
|
| 48 |
+
x = torch.linspace(-1, 1, steps=latent_width // factor, device=device)
|
| 49 |
+
|
| 50 |
+
y_grid, x_grid = torch.meshgrid(y, x, indexing="ij")
|
| 51 |
+
|
| 52 |
+
x_grid = x_grid - center_x
|
| 53 |
+
y_grid = y_grid - center_y
|
| 54 |
+
|
| 55 |
+
gauss = torch.exp(-((x_grid**2 + y_grid**2) / (2 * std_dev**2)))
|
| 56 |
+
gauss = gauss[None, None, :, :] # add batch and channel dimensions
|
| 57 |
+
|
| 58 |
+
return gauss
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def apply_tkg_noise(
|
| 62 |
+
latents: torch.Tensor,
|
| 63 |
+
shift: float = 0.11,
|
| 64 |
+
delta_shift: float = 0.1,
|
| 65 |
+
std_dev: float = 0.5,
|
| 66 |
+
factor: int = 8,
|
| 67 |
+
channels: list[int] = [0, 1, 1, 0],
|
| 68 |
+
):
|
| 69 |
+
batch_size, num_channels, latent_height, latent_width = latents.shape
|
| 70 |
+
|
| 71 |
+
shifted_latents = get_mean_shifted_latents(
|
| 72 |
+
latents,
|
| 73 |
+
shift=shift,
|
| 74 |
+
delta_shift=delta_shift,
|
| 75 |
+
channels=channels,
|
| 76 |
+
)
|
| 77 |
+
gauss_mask = get_2d_gaussian(
|
| 78 |
+
latent_height=latent_height,
|
| 79 |
+
latent_width=latent_width,
|
| 80 |
+
std_dev=std_dev,
|
| 81 |
+
center_x=0.0,
|
| 82 |
+
center_y=0.0,
|
| 83 |
+
factor=factor,
|
| 84 |
+
device=latents.device,
|
| 85 |
+
)
|
| 86 |
+
gauss_mask = F.interpolate(
|
| 87 |
+
gauss_mask,
|
| 88 |
+
size=(latent_height, latent_width),
|
| 89 |
+
mode="bilinear",
|
| 90 |
+
align_corners=False,
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
gauss_mask = gauss_mask.expand(batch_size, num_channels, -1, -1)
|
| 94 |
+
|
| 95 |
+
noised_latents = shifted_latents * (1 - gauss_mask) + latents * gauss_mask
|
| 96 |
+
|
| 97 |
+
return noised_latents
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
class ColorSet(NamedTuple):
|
| 101 |
+
name: str
|
| 102 |
+
channels: list[int]
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
# ref: Figure 28. Additional Result in various color Background with SD
|
| 106 |
+
COLOR_SETS: list[ColorSet] = [
|
| 107 |
+
ColorSet("green", [0, 1, 1, 0]),
|
| 108 |
+
ColorSet("cyan", [0, 1, 0, 0]),
|
| 109 |
+
ColorSet("magenta", [0, -1, -1, -1]),
|
| 110 |
+
ColorSet("purple", [0, 0, -1, -1]),
|
| 111 |
+
ColorSet("black", [-1, 0, 0, 1]),
|
| 112 |
+
ColorSet("orange", [-1, -1, 1, 0]),
|
| 113 |
+
ColorSet("white", [0, 0, 0, -1]),
|
| 114 |
+
ColorSet("yellow", [0, -1, 1, -1]),
|
| 115 |
+
]
|
| 116 |
+
|
| 117 |
+
COLOR_SET_MAP: dict[str, ColorSet] = {c.name: c for c in COLOR_SETS}
|
uv.lock
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|