import torch import gradio as gr from utils import create_vocab, setup_seed from dataset_mlm import get_paded_token_idx_gen, add_tokens_to_vocab setup_seed(4) device = torch.device("cpu") vocab_mlm = create_vocab() vocab_mlm = add_tokens_to_vocab(vocab_mlm) save_path = 'mlm-model-27.pt' model = torch.load(save_path) model = model.to(device) def CTXGen(X1, X2, X3, top_k): predicted_token_probability_all = [] model.eval() topk = [] with torch.no_grad(): new_seq = None seq = [f"{X1}|{X2}|{X3}|||"] vocab_mlm.token_to_idx["X"] = 4 padded_seq, _, idx_msa, _ = get_paded_token_idx_gen(vocab_mlm, seq, new_seq) idx_msa = torch.tensor(idx_msa).unsqueeze(0).to(device) mask_positions = [i for i, token in enumerate(padded_seq) if token == "X"] if not mask_positions: raise ValueError("Nothing found in the sequence to predict.") for mask_position in mask_positions: padded_seq[mask_position] = "[MASK]" input_ids = vocab_mlm.__getitem__(padded_seq) input_ids = torch.tensor([input_ids]).to(device) logits = model(input_ids, idx_msa) mask_logits = logits[0, mask_position, :] predicted_token_probability, predicted_token_id = torch.topk((torch.softmax(mask_logits, dim=-1)), k=top_k) topk.append(predicted_token_id) predicted_token = vocab_mlm.idx_to_token[predicted_token_id[0].item()] predicted_token_probability_all.append(predicted_token_probability[0].item()) padded_seq[mask_position] = predicted_token cls_pos = vocab_mlm.to_tokens(list(topk[0])) Topk = cls_pos if X1 != "X": Subtype = X1 Potency = padded_seq[2],predicted_token_probability_all[0] elif X2 != "X": Subtype = padded_seq[1],predicted_token_probability_all[0] Potency = X2 else: Subtype = padded_seq[1],predicted_token_probability_all[0] Potency = padded_seq[2],predicted_token_probability_all[1] return Subtype, Potency, Topk iface = gr.Interface(fn=CTXGen, inputs=["text", "text", "text", "text"], outputs= ["text", "text", "text"]) iface.launch()