Spaces:
Sleeping
Sleeping
import re | |
import pandas as pd | |
class PepVocab: | |
def __init__(self): | |
self.token_to_idx = { | |
'<MASK>': -1, '<PAD>': 0, 'A': 1, 'C': 2, 'E': 3, 'D': 4, 'F': 5, 'I': 6, 'H': 7, | |
'K': 8, 'M': 9, 'L': 10, 'N': 11, 'Q': 12, 'P': 13, 'S': 14, | |
'R': 15, 'T': 16, 'W': 17, 'V': 18, 'Y': 19, 'G': 20, 'O': 21, 'U': 22, 'Z': 23, 'X': 24} | |
self.idx_to_token = { | |
-1: '<MASK>', 0: '<PAD>', 1: 'A', 2: 'C', 3: 'E', 4: 'D', 5: 'F', 6: 'I', 7: 'H', | |
8: 'K', 9: 'M', 10: 'L', 11: 'N', 12: 'Q', 13: 'P', 14: 'S', | |
15: 'R', 16: 'T', 17: 'W', 18: 'V', 19: 'Y', 20: 'G', 21: 'O', 22: 'U', 23: 'Z', 24: 'X'} | |
self.get_attention_mask = False | |
self.attention_mask = [] | |
def set_get_attn(self, is_get: bool): | |
self.get_attention_mask = is_get | |
def __len__(self): | |
return len(self.idx_to_token) | |
def __getitem__(self, tokens): | |
''' | |
note: input should a splited sequence | |
Args: | |
tokens: a token or token list of splited | |
''' | |
if not isinstance(tokens, (list, tuple)): | |
# return self.token_to_idx.get(tokens) | |
return self.token_to_idx[tokens] | |
return [self.__getitem__(token) for token in tokens] | |
def vocab_from_txt(self, path): | |
''' | |
note: this function use for constructing vocab mapping | |
but it is only suitable for special txt format | |
it support one column txt file, which column name is 0 | |
''' | |
token_to_idx = {} | |
idx_to_token = {} | |
chr_idx = pd.read_csv(path, header=None, sep='\t') | |
if chr_idx.shape[1] == 1: | |
for idx, token in enumerate(chr_idx[0]): | |
token_to_idx[token] = idx | |
idx_to_token[idx] = token | |
self.token_to_idx = token_to_idx | |
self.idx_to_token = idx_to_token | |
def to_tokens(self, indices): | |
''' | |
note: input should a integer list | |
''' | |
if hasattr(indices, '__len__') and len(indices) > 1: | |
return [self.idx_to_token[int(index)] for index in indices] | |
return self.idx_to_token[indices] | |
def add_special_token(self, token: str|list|tuple) -> None: | |
if not isinstance(token, (list, tuple)): | |
if token in self.token_to_idx: | |
raise ValueError(f"token {token} already in the vocab") | |
self.idx_to_token[len(self.idx_to_token)] = token | |
self.token_to_idx[token] = len(self.token_to_idx) | |
else: | |
[self.add_special_token(t) for t in token] | |
def split_seq(self, seq: str|list|tuple) -> list: | |
if not isinstance(seq, (list, tuple)): | |
return re.findall(r"<[a-zA-Z0-9]+>|[a-zA-Z-]", seq) | |
return [self.split_seq(s) for s in seq] # a list of list | |
def truncate_pad(self, line, num_steps, padding_token='<PAD>') -> list: | |
if not isinstance(line[0], list): | |
if len(line) > num_steps: | |
if self.get_attention_mask: | |
self.attention_mask.append([1]*num_steps) | |
return line[:num_steps] | |
if self.get_attention_mask: | |
self.attention_mask.append([1] * len(line) + [0] * (num_steps - len(line))) | |
return line + [padding_token] * (num_steps - len(line)) | |
else: | |
return [self.truncate_pad(l, num_steps, padding_token) for l in line] # a list of list | |
def get_attention_mask_mat(self): | |
attention_mask = self.attention_mask | |
self.attention_mask = [] | |
return attention_mask | |
def seq_to_idx(self, seq: str|list|tuple, num_steps: int, padding_token='<PAD>') -> list: | |
''' | |
note: ensure to execut this function after add_special_token | |
''' | |
splited_seq = self.split_seq(seq) | |
# ********************** | |
# after split, we need to mask sequence | |
# note: | |
# 1. mask tokens by probability | |
# 2. return a list or list of list | |
# ********************** | |
padded_seq = self.truncate_pad(splited_seq, num_steps, padding_token) | |
return self.__getitem__(padded_seq) | |
class MutilVocab: | |
def __init__(self, data, AA_tok_len=2): | |
""" | |
Args: | |
data (_type_): | |
AA_tok_len (int, optional): Defaults to 1. | |
start_token (bool, optional): True is required for encoder-based model. | |
""" | |
## Load train dataset | |
self.x_data = data | |
self.tok_AA_len = AA_tok_len | |
self.default_AA = list("RHKDESTNQCGPAVILMFYW") | |
# AAs which are not included in default_AA | |
self.tokens = self._token_gen(self.tok_AA_len) | |
self.token_to_idx = {k: i + 4 for i, k in enumerate(self.tokens)} | |
self.token_to_idx["[PAD]"] = 0 ## idx as 0 is PAD | |
self.token_to_idx["[CLS]"] = 1 ## idx as 1 is CLS | |
self.token_to_idx["[SEP]"] = 2 ## idx as 2 is SEP | |
self.token_to_idx["[MASK]"] = 3 ## idx as 3 is MASK | |
def split_seq(self): | |
self.X = [self._seq_to_tok(seq) for seq in self.x_data] | |
return self.X | |
def tok_idx(self, seqs): | |
''' | |
note: ensure to execut this function before truancate_pad | |
''' | |
seqs_idx = [] | |
for seq in seqs: | |
seq_idx = [] | |
for s in seq: | |
seq_idx.append(self.token_to_idx[s]) | |
seqs_idx.append(seq_idx) | |
return seqs_idx | |
def _token_gen(self, tok_AA_len: int, st: str = "", curr_depth: int = 0): | |
"""Generate tokens based on default amino acid residues | |
and also includes "X" as arbitrary residues. | |
Length of AAs in each token should be provided by "tok_AA_len" | |
Args: | |
tok_AA_len (int): Length of token | |
st (str, optional): Defaults to ''. | |
curr_depth (int, optional): Defaults to 0. | |
Returns: | |
List: List of tokens | |
""" | |
curr_depth += 1 | |
if curr_depth <= tok_AA_len: | |
l = [ | |
st + t | |
for s in self.default_AA | |
for t in self._token_gen(tok_AA_len, s, curr_depth) | |
] | |
return l | |
else: | |
return [st] | |
def _seq_to_tok(self, seq: str): | |
"""Convert each token to index | |
Args: | |
seq (str): AA sequence | |
Returns: | |
list: A list of indexes | |
""" | |
seq_idx = [] | |
seq_idx += ["[CLS]"] | |
for i in range(len(seq) - self.tok_AA_len + 1): | |
curr_token = seq[i : i + self.tok_AA_len] | |
seq_idx.append(curr_token) | |
seq_idx += ['[SEP]'] | |
return seq_idx | |