Spaces:
Sleeping
Sleeping
import torch.nn as nn | |
import copy, math | |
import torch | |
import numpy as np | |
import torch.nn.functional as F | |
from transformers import AutoModelForMaskedLM, AutoConfig | |
from bertmodel import make_bert, make_bert_without_emb | |
from utils import ContraLoss | |
def load_pretrained_model(): | |
model_checkpoint = "Rostlab/prot_bert" | |
config = AutoConfig.from_pretrained(model_checkpoint) | |
model = AutoModelForMaskedLM.from_config(config) | |
return model | |
class ConoEncoder(nn.Module): | |
def __init__(self, encoder): | |
super(ConoEncoder, self).__init__() | |
self.encoder = encoder | |
self.trainable_encoder = make_bert_without_emb() | |
for param in self.encoder.parameters(): | |
param.requires_grad = False | |
def forward(self, x, mask): # x:(128,54) mask:(128,54) | |
feat = self.encoder(x, attention_mask=mask) # (128,54,128) | |
feat = list(feat.values())[0] # (128,54,128) | |
feat = self.trainable_encoder(feat, mask) # (128,54,128) | |
return feat | |
class MSABlock(nn.Module): | |
def __init__(self, in_dim, out_dim, vocab_size): | |
super(MSABlock, self).__init__() | |
self.embedding = nn.Embedding(vocab_size, in_dim) | |
self.mlp = nn.Sequential( | |
nn.Linear(in_dim, out_dim), | |
nn.LeakyReLU(), | |
nn.Linear(out_dim, out_dim) | |
) | |
self.init() | |
def init(self): | |
for layer in self.mlp.children(): | |
if isinstance(layer, nn.Linear): | |
nn.init.xavier_uniform_(layer.weight) | |
# nn.init.xavier_uniform_(self.embedding.weight) | |
def forward(self, x): # x: (128,3,54) | |
x = self.embedding(x) # x: (128,3,54,128) | |
x = self.mlp(x) # x: (128,3,54,128) | |
return x | |
class ConoModel(nn.Module): | |
def __init__(self, encoder, msa_block, decoder): | |
super(ConoModel, self).__init__() | |
self.encoder = encoder | |
self.msa_block = msa_block | |
self.feature_combine = nn.Conv2d(in_channels=4, out_channels=1, kernel_size=1) | |
self.decoder = decoder | |
def forward(self, input_ids, msa, attn_idx=None): | |
encoder_output = self.encoder.forward(input_ids, attn_idx) # (128,54,128) | |
msa_output = self.msa_block(msa) # (128,3,54,128) | |
# msa_output = torch.mean(msa_output, dim=1) | |
encoder_output = encoder_output.view(input_ids.shape[0], 54, -1).unsqueeze(1) # (128,1,54,128) | |
output = torch.cat([encoder_output*5, msa_output], dim=1) # (128,4,54,128) | |
output = self.feature_combine(output) # (128,1,54,128) | |
output = output.squeeze(1) # (128,54,128) | |
logits = self.decoder(output) # (128,54,85) | |
return logits | |
class ContraModel(nn.Module): | |
def __init__(self, cono_encoder): | |
super(ContraModel, self).__init__() | |
self.contra_loss = ContraLoss() | |
self.encoder1 = cono_encoder | |
self.encoder2 = make_bert(404, 6, 128) | |
# contrastive decoder | |
self.lstm = nn.LSTM(16, 16, batch_first=True) | |
self.contra_decoder = nn.Sequential( | |
nn.Linear(128, 64), | |
nn.LeakyReLU(), | |
nn.Linear(64, 32), | |
nn.LeakyReLU(), | |
nn.Linear(32, 16), | |
nn.LeakyReLU(), | |
nn.Dropout(0.1), | |
) | |
# classifier | |
self.pre_classifer = nn.LSTM(128, 64, batch_first=True) | |
self.classifer = nn.Sequential( | |
nn.Linear(128, 32), | |
nn.LeakyReLU(), | |
nn.Linear(32, 6), | |
nn.Softmax(dim=-1) | |
) | |
self.init() | |
def init(self): | |
for layer in self.contra_decoder.children(): | |
if isinstance(layer, nn.Linear): | |
nn.init.xavier_uniform_(layer.weight) | |
for layer in self.classifer.children(): | |
if isinstance(layer, nn.Linear): | |
nn.init.xavier_uniform_(layer.weight) | |
for layer in self.pre_classifer.children(): | |
if isinstance(layer, nn.Linear): | |
nn.init.xavier_uniform_(layer.weight) | |
for layer in self.lstm.children(): | |
if isinstance(layer, nn.Linear): | |
nn.init.xavier_uniform_(layer.weight) | |
def compute_class_loss(self, feat1, feat2, labels): | |
_, cls_feat1= self.pre_classifer(feat1) | |
_, cls_feat2 = self.pre_classifer(feat2) | |
cls_feat1 = torch.cat([cls_feat1[0], cls_feat1[1]], dim=-1).squeeze(0) | |
cls_feat2 = torch.cat([cls_feat2[0], cls_feat2[1]], dim=-1).squeeze(0) | |
cls1_dis = self.classifer(cls_feat1) | |
cls2_dis = self.classifer(cls_feat2) | |
cls1_loss = F.cross_entropy(cls1_dis, labels.to('cuda:0')) | |
cls2_loss = F.cross_entropy(cls2_dis, labels.to('cuda:0')) | |
return cls1_loss, cls2_loss | |
def compute_contrastive_loss(self, feat1, feat2): | |
contra_feat1 = self.contra_decoder(feat1) | |
contra_feat2 = self.contra_decoder(feat2) | |
_, feat1 = self.lstm(contra_feat1) | |
_, feat2 = self.lstm(contra_feat2) | |
feat1 = torch.cat([feat1[0], feat1[1]], dim=-1).squeeze(0) | |
feat2 = torch.cat([feat2[0], feat2[1]], dim=-1).squeeze(0) | |
ctr_loss = self.contra_loss(feat1, feat2) | |
return ctr_loss | |
def forward(self, x1, x2, labels=None): | |
loss = dict() | |
idx1, attn1 = x1 | |
idx2, attn2 = x2 | |
feat1 = self.encoder1(idx1.to('cuda:0'), attn1.to('cuda:0')) | |
feat2 = self.encoder2(idx2.to('cuda:0'), attn2.to('cuda:0')) | |
cls1_loss, cls2_loss = self.compute_class_loss(feat1, feat2, labels) | |
ctr_loss = self.compute_contrastive_loss(feat1, feat2) | |
loss['cls1_loss'] = cls1_loss | |
loss['cls2_loss'] = cls2_loss | |
loss['ctr_loss'] = ctr_loss | |
return loss |