import subprocess import gradio as gr import pandas as pd from ansi2html import Ansi2HTMLConverter ansi2html_converter = Ansi2HTMLConverter(inline=True) def run_benchmark(kwargs): for key, value in kwargs.copy().items(): if key.label == "Compare to Baseline": baseline = value kwargs.pop(key) elif key.label == "experiment_name": experiment_name = value kwargs.pop(key) elif key.label == "model": model = value kwargs.pop(key) elif key.label == "task": task = value kwargs.pop(key) elif key.label == "device": device = value kwargs.pop(key) elif key.label == "backend": backend = value kwargs.pop(key) elif key.label == "benchmark": benchmark = value kwargs.pop(key) else: continue if baseline: baseline_arguments = [ "optimum-benchmark", "--config-dir", "./configs", "--config-name", "base_config", f"backend=pytorch", f"task={task}", f"model={model}", f"device={device}", f"benchmark={benchmark}", f"experiment_name=baseline", ] for component, value in kwargs.items(): if f"{benchmark}." in component.label: label = component.label.replace(f"{benchmark}.", "benchmark.") if isinstance(component, gr.Dataframe): for sub_key, sub_value in zip(component.headers, value[0]): baseline_arguments.append(f"++{label}.{sub_key}={sub_value}") else: baseline_arguments.append(f"{label}={value}") # yield from run_experiment(baseline_arguments) but get the return code baseline_return_code, html_text = yield from run_experiment(baseline_arguments, "") if baseline_return_code is not None and baseline_return_code != 0: yield gr.update(value=html_text), gr.update(interactive=True), gr.update(visible=False) return else: html_text = "" arguments = [ "optimum-benchmark", "--config-dir", "./configs", "--config-name", "base_config", f"task={task}", f"model={model}", f"device={device}", f"backend={backend}", f"benchmark={benchmark}", f"experiment_name={experiment_name}", ] for component, value in kwargs.items(): if f"{backend}." in component.label or f"{benchmark}." in component.label: label = component.label.replace(f"{backend}.", "backend.").replace(f"{benchmark}.", "benchmark.") if isinstance(component, gr.Dataframe): for sub_key, sub_value in zip(component.headers, value[0]): arguments.append(f"++{label}.{sub_key}={sub_value}") else: arguments.append(f"{label}={value}") return_code, html_text = yield from run_experiment(arguments, html_text) if return_code is not None and return_code != 0: yield gr.update(value=html_text), gr.update(interactive=True), gr.update(visible=False) return if baseline: baseline_table = pd.read_csv(f"runs/baseline/{benchmark}_results.csv", index_col=0) table = pd.read_csv(f"runs/{experiment_name}/{benchmark}_results.csv", index_col=0) # concat tables table = pd.concat([baseline_table, table], axis=0) table = postprocess_table(table, experiment_name) else: table = pd.read_csv(f"runs/{experiment_name}/{benchmark}_results.csv", index_col=0) table_update = gr.update(visible=True, value={"headers": list(table.columns), "data": table.values.tolist()}) yield gr.update(value=html_text), gr.update(interactive=True), table_update return def run_experiment(args, html_text=""): command = "
".join(args) html_text += f"

Running command:

{command}" yield gr.update(value=html_text), gr.update(interactive=False), gr.update(visible=False) # stream subprocess output process = subprocess.Popen( args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True, ) curr_ansi_text = "" for ansi_line in iter(process.stdout.readline, ""): # stream process output to stdout print(ansi_line, end="") # skip torch.distributed.nn.jit.instantiator messages if "torch.distributed.nn.jit.instantiator" in ansi_line: continue # process download messages if "Downloading " in curr_ansi_text and "Downloading " in ansi_line: curr_ansi_text = curr_ansi_text.split("\n")[:-2] print(curr_ansi_text) curr_ansi_text.append(ansi_line) curr_ansi_text = "\n".join(curr_ansi_text) else: # append line to ansi text curr_ansi_text += ansi_line # convert ansi to html curr_html_text = ansi2html_converter.convert(curr_ansi_text) # stream html output to gradio cumul_html_text = html_text + "

Streaming logs:

" + curr_html_text yield gr.update(value=cumul_html_text), gr.update(interactive=False), gr.update(visible=False) return process.returncode, cumul_html_text def postprocess_table(table, experiment_name): table["experiment_name"] = ["baseline", experiment_name] table = table.set_index("experiment_name") table.reset_index(inplace=True) if "forward.latency(s)" in table.columns: table["forward.latency.reduction(%)"] = ( table["forward.latency(s)"] / table["forward.latency(s)"].iloc[0] - 1 ) * 100 table["forward.latency.reduction(%)"] = table["forward.latency.reduction(%)"].round(2) if "forward.throughput(samples/s)" in table.columns: table["forward.throughput.speedup(%)"] = ( table["forward.throughput(samples/s)"] / table["forward.throughput(samples/s)"].iloc[0] - 1 ) * 100 table["forward.throughput.speedup(%)"] = table["forward.throughput.speedup(%)"].round(2) if "forward.peak_memory(MB)" in table.columns: table["forward.peak_memory.reduction(%)"] = ( table["forward.peak_memory(MB)"] / table["forward.peak_memory(MB)"].iloc[0] - 1 ) * 100 table["forward.peak_memory.reduction(%)"] = table["forward.peak_memory.savings(%)"].round(2) if "generate.latency(s)" in table.columns: table["generate.latency.reduction(%)"] = ( table["generate.latency(s)"] / table["generate.latency(s)"].iloc[0] - 1 ) * 100 table["generate.latency.reduction(%)"] = table["generate.latency.reduction(%)"].round(2) if "generate.throughput(tokens/s)" in table.columns: table["generate.throughput.speedup(%)"] = ( table["generate.throughput(tokens/s)"] / table["generate.throughput(tokens/s)"].iloc[0] - 1 ) * 100 table["generate.throughput.speedup(%)"] = table["generate.throughput.speedup(%)"].round(2) if "generate.peak_memory(MB)" in table.columns: table["generate.peak_memory.reduction(%)"] = ( table["generate.peak_memory(MB)"] / table["generate.peak_memory(MB)"].iloc[0] - 1 ) * 100 table["generate.peak_memory.reduction(%)"] = table["generate.peak_memory.reduction(%)"].round(2) return table