Spaces:
Running
Running
Commit
Β·
7ecfa5a
1
Parent(s):
76b423c
fix
Browse files- src/control_panel.py +32 -32
- src/llm_perf.py +5 -5
src/control_panel.py
CHANGED
|
@@ -40,7 +40,7 @@ def create_control_panel(machine: str):
|
|
| 40 |
with gr.Row():
|
| 41 |
with gr.Column(scale=1, variant="panel"):
|
| 42 |
datatype_checkboxes = gr.CheckboxGroup(
|
| 43 |
-
label="
|
| 44 |
choices=["float32", "float16", "bfloat16"],
|
| 45 |
value=["float32", "float16", "bfloat16"],
|
| 46 |
info="βοΈ Select the load data types",
|
|
@@ -49,8 +49,8 @@ def create_control_panel(machine: str):
|
|
| 49 |
with gr.Column(scale=1, variant="panel"):
|
| 50 |
optimization_checkboxes = gr.CheckboxGroup(
|
| 51 |
label="Attentions ποΈ",
|
| 52 |
-
choices=["
|
| 53 |
-
value=["
|
| 54 |
info="βοΈ Select the optimization",
|
| 55 |
elem_id="optimization-checkboxes",
|
| 56 |
)
|
|
@@ -61,21 +61,15 @@ def create_control_panel(machine: str):
|
|
| 61 |
"None",
|
| 62 |
"BnB.4bit",
|
| 63 |
"BnB.8bit",
|
|
|
|
| 64 |
"GPTQ.4bit",
|
| 65 |
-
"GPTQ.4bit+ExllamaV1",
|
| 66 |
-
"GPTQ.4bit+ExllamaV2",
|
| 67 |
-
"AWQ.4bit+GEMM",
|
| 68 |
-
"AWQ.4bit+GEMV",
|
| 69 |
],
|
| 70 |
value=[
|
| 71 |
"None",
|
| 72 |
"BnB.4bit",
|
| 73 |
"BnB.8bit",
|
|
|
|
| 74 |
"GPTQ.4bit",
|
| 75 |
-
"GPTQ.4bit+ExllamaV1",
|
| 76 |
-
"GPTQ.4bit+ExllamaV2",
|
| 77 |
-
"AWQ.4bit+GEMM",
|
| 78 |
-
"AWQ.4bit+GEMV",
|
| 79 |
],
|
| 80 |
info="βοΈ Select the quantization schemes",
|
| 81 |
elem_id="quantization-checkboxes",
|
|
@@ -100,31 +94,35 @@ def create_control_panel(machine: str):
|
|
| 100 |
)
|
| 101 |
|
| 102 |
|
| 103 |
-
def
|
| 104 |
machine,
|
| 105 |
# inputs
|
| 106 |
score,
|
| 107 |
memory,
|
| 108 |
backends,
|
| 109 |
-
|
| 110 |
-
|
| 111 |
quantizations,
|
| 112 |
# interactive
|
| 113 |
columns,
|
| 114 |
search,
|
| 115 |
):
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
&
|
| 122 |
-
&
|
| 123 |
-
&
|
| 124 |
-
&
|
|
|
|
|
|
|
| 125 |
]
|
| 126 |
-
|
| 127 |
-
|
|
|
|
|
|
|
| 128 |
# filtered_bt_prefill_fig = get_bt_prefill_fig(filtered_df)
|
| 129 |
# filtered_bt_decode_fig = get_bt_decode_fig(filtered_df)
|
| 130 |
# filtered_fa2_prefill_fig = get_fa2_prefill_fig(filtered_df)
|
|
@@ -133,8 +131,8 @@ def filter_fn(
|
|
| 133 |
# filtered_quant_decode_fig = get_quant_decode_fig(filtered_df)
|
| 134 |
|
| 135 |
return [
|
| 136 |
-
|
| 137 |
-
|
| 138 |
# filtered_bt_prefill_fig,
|
| 139 |
# filtered_bt_decode_fig,
|
| 140 |
# filtered_fa2_prefill_fig,
|
|
@@ -170,7 +168,7 @@ def create_control_callback(
|
|
| 170 |
# quant_decode_plot,
|
| 171 |
):
|
| 172 |
filter_button.click(
|
| 173 |
-
fn=
|
| 174 |
inputs=[
|
| 175 |
# fixed
|
| 176 |
machine_textbox,
|
|
@@ -198,8 +196,10 @@ def create_control_callback(
|
|
| 198 |
)
|
| 199 |
|
| 200 |
|
| 201 |
-
def
|
| 202 |
-
llm_perf_df
|
|
|
|
|
|
|
| 203 |
selected_leaderboard_df = get_leaderboard_df(llm_perf_df)
|
| 204 |
selected_leaderboard_df = selected_leaderboard_df[
|
| 205 |
selected_leaderboard_df["Model π€"].str.contains(search, case=False)
|
|
@@ -219,12 +219,12 @@ def create_select_callback(
|
|
| 219 |
leaderboard_table,
|
| 220 |
):
|
| 221 |
columns_checkboxes.change(
|
| 222 |
-
fn=
|
| 223 |
inputs=[machine_textbox, columns_checkboxes, search_bar],
|
| 224 |
outputs=[leaderboard_table],
|
| 225 |
)
|
| 226 |
search_bar.change(
|
| 227 |
-
fn=
|
| 228 |
inputs=[machine_textbox, columns_checkboxes, search_bar],
|
| 229 |
outputs=[leaderboard_table],
|
| 230 |
)
|
|
|
|
| 40 |
with gr.Row():
|
| 41 |
with gr.Column(scale=1, variant="panel"):
|
| 42 |
datatype_checkboxes = gr.CheckboxGroup(
|
| 43 |
+
label="Precision π₯",
|
| 44 |
choices=["float32", "float16", "bfloat16"],
|
| 45 |
value=["float32", "float16", "bfloat16"],
|
| 46 |
info="βοΈ Select the load data types",
|
|
|
|
| 49 |
with gr.Column(scale=1, variant="panel"):
|
| 50 |
optimization_checkboxes = gr.CheckboxGroup(
|
| 51 |
label="Attentions ποΈ",
|
| 52 |
+
choices=["Eager", "SDPA", "FAv2"],
|
| 53 |
+
value=["Eager", "SDPA", "FAv2"],
|
| 54 |
info="βοΈ Select the optimization",
|
| 55 |
elem_id="optimization-checkboxes",
|
| 56 |
)
|
|
|
|
| 61 |
"None",
|
| 62 |
"BnB.4bit",
|
| 63 |
"BnB.8bit",
|
| 64 |
+
"AWQ.4bit",
|
| 65 |
"GPTQ.4bit",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
],
|
| 67 |
value=[
|
| 68 |
"None",
|
| 69 |
"BnB.4bit",
|
| 70 |
"BnB.8bit",
|
| 71 |
+
"AWQ.4bit",
|
| 72 |
"GPTQ.4bit",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
],
|
| 74 |
info="βοΈ Select the quantization schemes",
|
| 75 |
elem_id="quantization-checkboxes",
|
|
|
|
| 94 |
)
|
| 95 |
|
| 96 |
|
| 97 |
+
def filter_rows_fn(
|
| 98 |
machine,
|
| 99 |
# inputs
|
| 100 |
score,
|
| 101 |
memory,
|
| 102 |
backends,
|
| 103 |
+
precisions,
|
| 104 |
+
attentions,
|
| 105 |
quantizations,
|
| 106 |
# interactive
|
| 107 |
columns,
|
| 108 |
search,
|
| 109 |
):
|
| 110 |
+
llm_perf_df = get_llm_perf_df(machine=machine)
|
| 111 |
+
# print(attentions)
|
| 112 |
+
# print(llm_perf_df["Attention ποΈ"].unique())
|
| 113 |
+
filtered_llm_perf_df = llm_perf_df[
|
| 114 |
+
llm_perf_df["Model π€"].str.contains(search, case=False)
|
| 115 |
+
& llm_perf_df["Backend π"].isin(backends)
|
| 116 |
+
& llm_perf_df["Precision π₯"].isin(precisions)
|
| 117 |
+
& llm_perf_df["Attention ποΈ"].isin(attentions)
|
| 118 |
+
& llm_perf_df["Quantization ποΈ"].isin(quantizations)
|
| 119 |
+
& (llm_perf_df["Open LLM Score (%)"] >= score)
|
| 120 |
+
& (llm_perf_df["Memory (MB)"] <= memory)
|
| 121 |
]
|
| 122 |
+
selected_filtered_llm_perf_df = select_columns_fn(
|
| 123 |
+
machine, columns, search, filtered_llm_perf_df
|
| 124 |
+
)
|
| 125 |
+
selected_filtered_lat_score_mem_fig = get_lat_score_mem_fig(filtered_llm_perf_df)
|
| 126 |
# filtered_bt_prefill_fig = get_bt_prefill_fig(filtered_df)
|
| 127 |
# filtered_bt_decode_fig = get_bt_decode_fig(filtered_df)
|
| 128 |
# filtered_fa2_prefill_fig = get_fa2_prefill_fig(filtered_df)
|
|
|
|
| 131 |
# filtered_quant_decode_fig = get_quant_decode_fig(filtered_df)
|
| 132 |
|
| 133 |
return [
|
| 134 |
+
selected_filtered_llm_perf_df,
|
| 135 |
+
selected_filtered_lat_score_mem_fig,
|
| 136 |
# filtered_bt_prefill_fig,
|
| 137 |
# filtered_bt_decode_fig,
|
| 138 |
# filtered_fa2_prefill_fig,
|
|
|
|
| 168 |
# quant_decode_plot,
|
| 169 |
):
|
| 170 |
filter_button.click(
|
| 171 |
+
fn=filter_rows_fn,
|
| 172 |
inputs=[
|
| 173 |
# fixed
|
| 174 |
machine_textbox,
|
|
|
|
| 196 |
)
|
| 197 |
|
| 198 |
|
| 199 |
+
def select_columns_fn(machine, columns, search, llm_perf_df=None):
|
| 200 |
+
if llm_perf_df is None:
|
| 201 |
+
llm_perf_df = get_llm_perf_df(machine=machine)
|
| 202 |
+
|
| 203 |
selected_leaderboard_df = get_leaderboard_df(llm_perf_df)
|
| 204 |
selected_leaderboard_df = selected_leaderboard_df[
|
| 205 |
selected_leaderboard_df["Model π€"].str.contains(search, case=False)
|
|
|
|
| 219 |
leaderboard_table,
|
| 220 |
):
|
| 221 |
columns_checkboxes.change(
|
| 222 |
+
fn=select_columns_fn,
|
| 223 |
inputs=[machine_textbox, columns_checkboxes, search_bar],
|
| 224 |
outputs=[leaderboard_table],
|
| 225 |
)
|
| 226 |
search_bar.change(
|
| 227 |
+
fn=select_columns_fn,
|
| 228 |
inputs=[machine_textbox, columns_checkboxes, search_bar],
|
| 229 |
outputs=[leaderboard_table],
|
| 230 |
)
|
src/llm_perf.py
CHANGED
|
@@ -36,19 +36,19 @@ def get_raw_llm_perf_df(machine: str = "1xA10"):
|
|
| 36 |
try:
|
| 37 |
dfs.append(
|
| 38 |
pd.read_csv(
|
| 39 |
-
f"hf://datasets/optimum-benchmark/llm-perf-leaderboard/
|
| 40 |
)
|
| 41 |
)
|
| 42 |
except Exception:
|
| 43 |
print(f"Subset {subset} for machine {machine} not found")
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
"hf://datasets/optimum-benchmark/
|
| 48 |
)
|
| 49 |
|
| 50 |
llm_perf_df = pd.merge(
|
| 51 |
-
|
| 52 |
)
|
| 53 |
|
| 54 |
return llm_perf_df
|
|
|
|
| 36 |
try:
|
| 37 |
dfs.append(
|
| 38 |
pd.read_csv(
|
| 39 |
+
f"hf://datasets/optimum-benchmark/llm-perf-leaderboard/perf-df-{subset}-{machine}.csv"
|
| 40 |
)
|
| 41 |
)
|
| 42 |
except Exception:
|
| 43 |
print(f"Subset {subset} for machine {machine} not found")
|
| 44 |
|
| 45 |
+
perf_df = pd.concat(dfs)
|
| 46 |
+
llm_df = pd.read_csv(
|
| 47 |
+
"hf://datasets/optimum-benchmark/llm-perf-leaderboard/llm-df.csv"
|
| 48 |
)
|
| 49 |
|
| 50 |
llm_perf_df = pd.merge(
|
| 51 |
+
llm_df, perf_df, left_on="Model", right_on="config.backend.model"
|
| 52 |
)
|
| 53 |
|
| 54 |
return llm_perf_df
|