|
import gradio as gr |
|
from sentence_transformers import SentenceTransformer, util |
|
import json |
|
import os |
|
|
|
|
|
model_name = "HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1" |
|
model = SentenceTransformer(model_name) |
|
|
|
|
|
embeddings_file = f"movie_embeddings_{model_name.replace('/', '_')}.json" |
|
|
|
|
|
try: |
|
with open("movies.json", "r", encoding="utf-8") as f: |
|
movies_data = json.load(f) |
|
except FileNotFoundError: |
|
print("Ошибка: Файл movies.json не найден.") |
|
movies_data = [] |
|
|
|
|
|
if os.path.exists(embeddings_file): |
|
with open(embeddings_file, "r", encoding="utf-8") as f: |
|
movie_embeddings_loaded = json.load(f) |
|
print("Загружены эмбеддинги из файла.") |
|
else: |
|
movie_embeddings_loaded = {} |
|
|
|
|
|
movie_descriptions = {} |
|
movie_embeddings = {} |
|
|
|
for movie in movies_data: |
|
title = movie["name"] |
|
|
|
embedding_string = f"Название: {movie['name']}\nГод: {movie['year']}\nЖанры: {movie['genresList']}\nОписание: {movie['description']}" |
|
movie_descriptions[title] = embedding_string |
|
|
|
|
|
if title in movie_embeddings_loaded: |
|
movie_embeddings[title] = movie_embeddings_loaded[title] |
|
else: |
|
|
|
embedding = model.encode(embedding_string, convert_to_tensor=True).tolist() |
|
movie_embeddings[title] = embedding |
|
|
|
|
|
if len(movie_embeddings_loaded) < len(movie_embeddings): |
|
with open(embeddings_file, "w", encoding="utf-8") as f: |
|
json.dump(movie_embeddings, f, ensure_ascii=False, indent=4) |
|
print("Эмбеддинги сохранены в файл.") |
|
|
|
|
|
if len(movie_embeddings) > 0: |
|
movie_embeddings_tensor = { |
|
title: util.pytorch_cos_sim( |
|
model.encode(query, convert_to_tensor=True), |
|
model.encode(embedding_string, convert_to_tensor=True) |
|
) |
|
for title, embedding_string in movie_descriptions.items() |
|
} |
|
else: |
|
movie_embeddings_tensor = None |
|
|
|
def search_movies(query, top_k=3): |
|
""" |
|
Ищет наиболее похожие фильмы по запросу. |
|
|
|
Args: |
|
query: Текстовый запрос. |
|
top_k: Количество возвращаемых результатов. |
|
|
|
Returns: |
|
Строку с результатами поиска в формате HTML. |
|
""" |
|
if movie_embeddings_tensor is None: |
|
return "<p>Ошибка: Данные фильмов не загружены.</p>" |
|
|
|
|
|
sorted_movies = sorted( |
|
movie_embeddings_tensor.items(), |
|
key=lambda item: util.pytorch_cos_sim( |
|
model.encode(query, convert_to_tensor=True), |
|
model.encode(movie_descriptions[item[0]], convert_to_tensor=True) |
|
)[0][0], |
|
reverse=True |
|
) |
|
|
|
results_html = "" |
|
for title, _ in sorted_movies[:top_k]: |
|
|
|
for movie in movies_data: |
|
if movie["name"] == title: |
|
description = movie["description"] |
|
year = movie["year"] |
|
genres = movie["genresList"] |
|
score = util.pytorch_cos_sim( |
|
model.encode(query, convert_to_tensor=True), |
|
model.encode(movie_descriptions[title], convert_to_tensor=True) |
|
)[0][0].item() |
|
break |
|
|
|
results_html += f"<h3><b>{title} ({year})</b></h3>" |
|
results_html += f"<p><b>Жанры:</b> {genres}</p>" |
|
results_html += f"<p><b>Описание:</b> {description}</p>" |
|
results_html += f"<p><b>Сходство:</b> {score:.4f}</p>" |
|
results_html += "<hr>" |
|
|
|
return results_html |
|
|
|
|
|
iface = gr.Interface( |
|
fn=search_movies, |
|
inputs=gr.Textbox(label="Введите запрос:"), |
|
outputs=gr.HTML(label="Результаты поиска:"), |
|
title="Поиск фильмов по описанию", |
|
description="Введите запрос, и система найдет наиболее похожие фильмы по их описаниям.", |
|
examples=[ |
|
["Фильм про ограбление"], |
|
["Комедия 2019 года"], |
|
["Фантастика про космос"], |
|
], |
|
) |
|
|
|
|
|
iface.launch() |