Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import streamlit as st | |
| import uuid | |
| import os | |
| import re | |
| import sys | |
| import uuid | |
| from io import BytesIO | |
| sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/semantic_search") | |
| sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/RAG") | |
| sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/utilities") | |
| import boto3 | |
| import requests | |
| from boto3 import Session | |
| import botocore.session | |
| import json | |
| import random | |
| import string | |
| # import rag_DocumentLoader | |
| # import rag_DocumentSearcher | |
| import pandas as pd | |
| from PIL import Image | |
| import shutil | |
| import base64 | |
| import time | |
| import botocore | |
| #from langchain.callbacks.base import BaseCallbackHandler | |
| #import streamlit_nested_layout | |
| #from IPython.display import clear_output, display, display_markdown, Markdown | |
| from requests_aws4auth import AWS4Auth | |
| #import copali | |
| from requests.auth import HTTPBasicAuth | |
| import bedrock_agent | |
| import warnings | |
| warnings.filterwarnings("ignore", category=DeprecationWarning) | |
| st.set_page_config( | |
| #page_title="Semantic Search using OpenSearch", | |
| layout="wide", | |
| page_icon="images/opensearch_mark_default.png" | |
| ) | |
| parent_dirname = '/home/ubuntu/AI-search-with-amazon-opensearch-service/OpenSearchApp' | |
| USER_ICON = "images/user.png" | |
| AI_ICON = "images/opensearch-twitter-card.png" | |
| REGENERATE_ICON = "images/regenerate.png" | |
| s3_bucket_ = "pdf-repo-uploads" | |
| #"pdf-repo-uploads" | |
| polly_client = boto3.Session( | |
| region_name='us-east-1').client('polly') | |
| # Check if the user ID is already stored in the session state | |
| if 'user_id' in st.session_state: | |
| user_id = st.session_state['user_id'] | |
| #print(f"User ID: {user_id}") | |
| # If the user ID is not yet stored in the session state, generate a random UUID | |
| else: | |
| user_id = str(uuid.uuid4()) | |
| st.session_state['user_id'] = user_id | |
| if 'session_id_' not in st.session_state: | |
| st.session_state['session_id_'] = str(uuid.uuid1()) | |
| if "chats" not in st.session_state: | |
| st.session_state.chats = [ | |
| { | |
| 'id': 0, | |
| 'question': '', | |
| 'answer': '' | |
| } | |
| ] | |
| if "questions__" not in st.session_state: | |
| st.session_state.questions__ = [] | |
| if "answers__" not in st.session_state: | |
| st.session_state.answers__ = [] | |
| if "input_index" not in st.session_state: | |
| st.session_state.input_index = "hpijan2024hometrack"#"globalwarmingnew"#"hpijan2024hometrack_no_img_no_table" | |
| if "input_is_rerank" not in st.session_state: | |
| st.session_state.input_is_rerank = True | |
| if "input_copali_rerank" not in st.session_state: | |
| st.session_state.input_copali_rerank = False | |
| if "input_table_with_sql" not in st.session_state: | |
| st.session_state.input_table_with_sql = False | |
| if "inputs_" not in st.session_state: | |
| st.session_state.inputs_ = {} | |
| if "input_shopping_query" not in st.session_state: | |
| st.session_state.input_shopping_query="get me shoes suitable for trekking"#"What is the projected energy percentage from renewable sources in future?"#"Which city in United Kingdom has the highest average housing price ?"#"How many aged above 85 years died due to covid ?"# What is the projected energy from renewable sources ?" | |
| if "input_rag_searchType" not in st.session_state: | |
| st.session_state.input_rag_searchType = ["Sparse Search"] | |
| region = 'us-east-1' | |
| #bedrock_runtime_client = boto3.client('bedrock-runtime',region_name=region) | |
| output = [] | |
| service = 'es' | |
| st.markdown(""" | |
| <style> | |
| [data-testid=column]:nth-of-type(2) [data-testid=stVerticalBlock]{ | |
| gap: 0rem; | |
| } | |
| [data-testid=column]:nth-of-type(1) [data-testid=stVerticalBlock]{ | |
| gap: 0rem; | |
| } | |
| </style> | |
| """,unsafe_allow_html=True) | |
| ################ OpenSearch Py client ##################### | |
| # credentials = boto3.Session().get_credentials() | |
| # awsauth = AWSV4SignerAuth(credentials, region, service) | |
| # ospy_client = OpenSearch( | |
| # hosts = [{'host': 'search-opensearchservi-75ucark0bqob-bzk6r6h2t33dlnpgx2pdeg22gi.us-east-1.es.amazonaws.com', 'port': 443}], | |
| # http_auth = awsauth, | |
| # use_ssl = True, | |
| # verify_certs = True, | |
| # connection_class = RequestsHttpConnection, | |
| # pool_maxsize = 20 | |
| # ) | |
| ################# using boto3 credentials ################### | |
| # credentials = boto3.Session().get_credentials() | |
| # awsauth = AWS4Auth(credentials.access_key, credentials.secret_key, region, service, session_token=credentials.token) | |
| # service = 'es' | |
| ################# using boto3 credentials #################### | |
| # if "input_searchType" not in st.session_state: | |
| # st.session_state.input_searchType = "Conversational Search (RAG)" | |
| # if "input_temperature" not in st.session_state: | |
| # st.session_state.input_temperature = "0.001" | |
| # if "input_topK" not in st.session_state: | |
| # st.session_state.input_topK = 200 | |
| # if "input_topP" not in st.session_state: | |
| # st.session_state.input_topP = 0.95 | |
| # if "input_maxTokens" not in st.session_state: | |
| # st.session_state.input_maxTokens = 1024 | |
| def write_logo(): | |
| col1, col2, col3 = st.columns([5, 1, 5]) | |
| with col2: | |
| st.image(AI_ICON, use_column_width='always') | |
| def write_top_bar(): | |
| col1, col2 = st.columns([77,23]) | |
| with col1: | |
| st.page_link("app.py", label=":orange[Home]", icon="🏠") | |
| st.header("AI Shopping assistant",divider='rainbow') | |
| #st.image(AI_ICON, use_column_width='always') | |
| with col2: | |
| st.write("") | |
| st.write("") | |
| clear = st.button("Clear") | |
| st.write("") | |
| st.write("") | |
| return clear | |
| clear = write_top_bar() | |
| if clear: | |
| st.session_state.questions__ = [] | |
| st.session_state.answers__ = [] | |
| st.session_state.input_shopping_query="" | |
| st.session_state.session_id_ = str(uuid.uuid1()) | |
| bedrock_agent.delete_memory() | |
| # st.session_state.input_searchType="Conversational Search (RAG)" | |
| # st.session_state.input_temperature = "0.001" | |
| # st.session_state.input_topK = 200 | |
| # st.session_state.input_topP = 0.95 | |
| # st.session_state.input_maxTokens = 1024 | |
| def handle_input(): | |
| print("Question: "+st.session_state.input_shopping_query) | |
| print("-----------") | |
| print("\n\n") | |
| if(st.session_state.input_shopping_query==''): | |
| return "" | |
| inputs = {} | |
| for key in st.session_state: | |
| if key.startswith('input_'): | |
| inputs[key.removeprefix('input_')] = st.session_state[key] | |
| st.session_state.inputs_ = inputs | |
| ####### | |
| #st.write(inputs) | |
| question_with_id = { | |
| 'question': inputs["shopping_query"], | |
| 'id': len(st.session_state.questions__) | |
| } | |
| st.session_state.questions__.append(question_with_id) | |
| print(inputs) | |
| out_ = bedrock_agent.query_(inputs) | |
| st.session_state.answers__.append({ | |
| 'answer': out_['text'], | |
| 'source':out_['source'], | |
| 'last_tool':out_['last_tool'], | |
| 'id': len(st.session_state.questions__) | |
| }) | |
| st.session_state.input_shopping_query="" | |
| # search_type = st.selectbox('Select the Search type', | |
| # ('Conversational Search (RAG)', | |
| # 'OpenSearch vector search', | |
| # 'LLM Text Generation' | |
| # ), | |
| # key = 'input_searchType', | |
| # help = "Select the type of retriever\n1. Conversational Search (Recommended) - This will include both the OpenSearch and LLM in the retrieval pipeline \n (note: This will put opensearch response as context to LLM to answer) \n2. OpenSearch vector search - This will put only OpenSearch's vector search in the pipeline, \n(Warning: this will lead to unformatted results )\n3. LLM Text Generation - This will include only LLM in the pipeline, \n(Warning: This will give hallucinated and out of context answers_)" | |
| # ) | |
| # col1, col2, col3, col4 = st.columns(4) | |
| # with col1: | |
| # st.text_input('Temperature', value = "0.001", placeholder='LLM Temperature', key = 'input_temperature',help = "Set the temperature of the Large Language model. \n Note: 1. Set this to values lower to 1 in the order of 0.001, 0.0001, such low values reduces hallucination and creativity in the LLM response; 2. This applies only when LLM is a part of the retriever pipeline") | |
| # with col2: | |
| # st.number_input('Top K', value = 200, placeholder='Top K', key = 'input_topK', step = 50, help = "This limits the LLM's predictions to the top k most probable tokens at each step of generation, this applies only when LLM is a prt of the retriever pipeline") | |
| # with col3: | |
| # st.number_input('Top P', value = 0.95, placeholder='Top P', key = 'input_topP', step = 0.05, help = "This sets a threshold probability and selects the top tokens whose cumulative probability exceeds the threshold while the tokens are generated by the LLM") | |
| # with col4: | |
| # st.number_input('Max Output Tokens', value = 500, placeholder='Max Output Tokens', key = 'input_maxTokens', step = 100, help = "This decides the total number of tokens generated as the final response. Note: Values greater than 1000 takes longer response time") | |
| # st.markdown('---') | |
| def write_user_message(md): | |
| col1, col2 = st.columns([3,97]) | |
| with col1: | |
| st.image(USER_ICON, use_column_width='always') | |
| with col2: | |
| #st.warning(md['question']) | |
| st.markdown("<div style='color:#e28743';font-size:18px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;font-style: italic;'>"+md['question']+"</div>", unsafe_allow_html = True) | |
| def render_answer(question,answer,index): | |
| col1, col2, col_3 = st.columns([4,74,22]) | |
| with col1: | |
| st.image(AI_ICON, use_column_width='always') | |
| with col2: | |
| use_interim_results = False | |
| src_dict = {} | |
| ans_ = answer['answer'] | |
| span_ans = ans_.replace('<question>',"<span style='fontSize:18px;color:#f37709;fontStyle:italic;'>").replace("</question>","</span>") | |
| st.markdown("<p>"+span_ans+"</p>",unsafe_allow_html = True) | |
| print("answer['source']") | |
| print("-------------") | |
| print(answer['source']) | |
| print("-------------") | |
| print(answer['last_tool']) | |
| if(answer['last_tool']['name'] in ["generate_images","get_relevant_items_for_image","get_relevant_items_for_text","retrieve_with_hybrid_search","retrieve_with_keyword_search","get_any_general_recommendation"]): | |
| use_interim_results = True | |
| src_dict =json.loads(answer['last_tool']['response'].replace("'",'"')) | |
| print("src_dict") | |
| print("-------------") | |
| print(src_dict) | |
| #if("get_relevant_items_for_text" in src_dict): | |
| if(use_interim_results and answer['last_tool']['name']!= 'generate_images' and answer['last_tool']['name']!= 'get_any_general_recommendation'): | |
| key_ = answer['last_tool']['name'] | |
| st.write("<br><br>",unsafe_allow_html = True) | |
| img_col1, img_col2, img_col3 = st.columns([30,30,40]) | |
| for index,item in enumerate(src_dict[key_]): | |
| response_ = requests.get(item['image']) | |
| img = Image.open(BytesIO(response_.content)) | |
| resizedImg = img.resize((230, 180), Image.Resampling.LANCZOS) | |
| if(index ==0): | |
| with img_col1: | |
| st.image(resizedImg,use_column_width = True,caption = item['title']) | |
| if(index ==1): | |
| with img_col2: | |
| st.image(resizedImg,use_column_width = True,caption = item['title']) | |
| #st.image(parent_dirname+"/retrieved_esci_images/"+item['id']+"_resized.jpg",caption = item['title'],use_column_width = True) | |
| if(answer['last_tool']['name'] == "generate_images" or answer['last_tool']['name'] == "get_any_general_recommendation"): | |
| st.write("<br>",unsafe_allow_html = True) | |
| gen_img_col1, gen_img_col2,gen_img_col2 = st.columns([30,30,30]) | |
| res = src_dict['generate_images'].replace('s3://','') | |
| s3_ = boto3.resource('s3', | |
| aws_access_key_id=st.secrets['user_access_key'], | |
| aws_secret_access_key=st.secrets['user_secret_key'], region_name = 'us-east-1') | |
| key = res.split('/')[1] | |
| s3_stream = s3_.Object("bedrock-video-generation-us-east-1-lbxkrh", key).get()['Body'].read() | |
| img_ = Image.open(BytesIO(s3_stream)) | |
| resizedImg = img_.resize((230, 180), Image.Resampling.LANCZOS) | |
| with gen_img_col1: | |
| st.image(resizedImg,caption = "Generated image for "+key.split(".")[0],use_column_width = True) | |
| st.write("<br>",unsafe_allow_html = True) | |
| # def stream_(): | |
| # #use for streaming response on the client side | |
| # for word in ans_.split(" "): | |
| # yield word + " " | |
| # time.sleep(0.04) | |
| # #use for streaming response from Llm directly | |
| # if(isinstance(ans_,botocore.eventstream.EventStream)): | |
| # for event in ans_: | |
| # chunk = event.get('chunk') | |
| # if chunk: | |
| # chunk_obj = json.loads(chunk.get('bytes').decode()) | |
| # if('content_block' in chunk_obj or ('delta' in chunk_obj and 'text' in chunk_obj['delta'])): | |
| # key_ = list(chunk_obj.keys())[2] | |
| # text = chunk_obj[key_]['text'] | |
| # clear_output(wait=True) | |
| # output.append(text) | |
| # yield text | |
| # time.sleep(0.04) | |
| # if(index == len(st.session_state.questions_)): | |
| # st.write_stream(stream_) | |
| # if(isinstance(st.session_state.answers_[index-1]['answer'],botocore.eventstream.EventStream)): | |
| # st.session_state.answers_[index-1]['answer'] = "".join(output) | |
| # else: | |
| # st.write(ans_) | |
| # polly_response = polly_client.synthesize_speech(VoiceId='Joanna', | |
| # OutputFormat='ogg_vorbis', | |
| # Text = ans_, | |
| # Engine = 'neural') | |
| # audio_col1, audio_col2 = st.columns([50,50]) | |
| # with audio_col1: | |
| # st.audio(polly_response['AudioStream'].read(), format="audio/ogg") | |
| #st.markdown("<div style='font-size:18px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;border-radius: 10px;'>"+ans_+"</div>", unsafe_allow_html = True) | |
| #st.markdown("<div style='color:#e28743';padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;'><b>Relevant images from the document :</b></div>", unsafe_allow_html = True) | |
| #st.write("") | |
| colu1,colu2,colu3 = st.columns([4,82,20]) | |
| if(answer['source']!={}): | |
| with colu2: | |
| with st.expander("Agent Traces:"): | |
| st.write(answer['source']) | |
| # with st.container(): | |
| # if(len(res_img)>0): | |
| # with st.expander("Images:"): | |
| # col3,col4,col5 = st.columns([33,33,33]) | |
| # cols = [col3,col4] | |
| # idx = 0 | |
| # #print(res_img) | |
| # for img_ in res_img: | |
| # if(img_['file'].lower()!='none' and idx < 2): | |
| # img = img_['file'].split(".")[0] | |
| # caption = img_['caption'] | |
| # with cols[idx]: | |
| # st.image(parent_dirname+"/figures/"+st.session_state.input_index+"/"+img+".jpg") | |
| # #st.write(caption) | |
| # idx = idx+1 | |
| # #st.markdown("<div style='color:#e28743';padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;'><b>Sources from the document:</b></div>", unsafe_allow_html = True) | |
| # if(len(answer["table"] )>0): | |
| # with st.expander("Table:"): | |
| # df = pd.read_csv(answer["table"][0]['name'],skipinitialspace = True, on_bad_lines='skip',delimiter='`') | |
| # df.fillna(method='pad', inplace=True) | |
| # st.table(df) | |
| # with st.expander("Raw sources:"): | |
| # st.write(answer["source"]) | |
| # with col_3: | |
| # #st.markdown("<div style='color:#e28743;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 5px;'><b>"+",".join(st.session_state.input_rag_searchType)+"</b></div>", unsafe_allow_html = True) | |
| # if(index == len(st.session_state.questions_)): | |
| # rdn_key = ''.join([random.choice(string.ascii_letters) | |
| # for _ in range(10)]) | |
| # currentValue = ''.join(st.session_state.input_rag_searchType)+str(st.session_state.input_is_rerank)+str(st.session_state.input_table_with_sql)+st.session_state.input_index | |
| # oldValue = ''.join(st.session_state.inputs_["rag_searchType"])+str(st.session_state.inputs_["is_rerank"])+str(st.session_state.inputs_["table_with_sql"])+str(st.session_state.inputs_["index"]) | |
| # #print("changing values-----------------") | |
| # def on_button_click(): | |
| # # print("button clicked---------------") | |
| # # print(currentValue) | |
| # # print(oldValue) | |
| # if(currentValue!=oldValue or 1==1): | |
| # #print("----------regenerate----------------") | |
| # st.session_state.input_query = st.session_state.questions_[-1]["question"] | |
| # st.session_state.answers_.pop() | |
| # st.session_state.questions_.pop() | |
| # handle_input() | |
| # with placeholder.container(): | |
| # render_all() | |
| # if("currentValue" in st.session_state): | |
| # del st.session_state["currentValue"] | |
| # try: | |
| # del regenerate | |
| # except: | |
| # pass | |
| # #print("------------------------") | |
| # #print(st.session_state) | |
| # placeholder__ = st.empty() | |
| # placeholder__.button("🔄",key=rdn_key,on_click=on_button_click) | |
| #Each answer will have context of the question asked in order to associate the provided feedback with the respective question | |
| def write_chat_message(md, q,index): | |
| #res_img = md['image'] | |
| #st.session_state['session_id'] = res['session_id'] to be added in memory | |
| chat = st.container() | |
| with chat: | |
| #print("st.session_state.input_index------------------") | |
| #print(st.session_state.input_index) | |
| render_answer(q,md,index) | |
| def render_all(): | |
| index = 0 | |
| for (q, a) in zip(st.session_state.questions__, st.session_state.answers__): | |
| index = index +1 | |
| write_user_message(q) | |
| write_chat_message(a, q,index) | |
| placeholder = st.empty() | |
| with placeholder.container(): | |
| render_all() | |
| st.markdown("") | |
| col_2, col_3 = st.columns([75,20]) | |
| #col_1, col_2, col_3 = st.columns([7.5,71.5,22]) | |
| # with col_1: | |
| # st.markdown("<p style='padding:0px 0px 0px 0px; color:#FF9900;font-size:120%'><b>Ask:</b></p>",unsafe_allow_html=True, help = 'Enter the questions and click on "GO"') | |
| with col_2: | |
| #st.markdown("") | |
| input = st.text_input( "Ask here",label_visibility = "collapsed",key="input_shopping_query") | |
| with col_3: | |
| #hidden = st.button("RUN",disabled=True,key = "hidden") | |
| # audio_value = st.audio_input("Record a voice message") | |
| # print(audio_value) | |
| play = st.button("Go",on_click=handle_input,key = "play") | |
| #with st.sidebar: | |
| # st.page_link("/home/ubuntu/AI-search-with-amazon-opensearch-service/OpenSearchApp/app.py", label=":orange[Home]", icon="🏠") | |
| # st.subheader(":blue[Sample Data]") | |
| # coln_1,coln_2 = st.columns([70,30]) | |
| # # index_select = st.radio("Choose one index",["UK Housing","Covid19 impacts on Ireland","Environmental Global Warming","BEIR Research"], | |
| # # captions = ['[preview](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/HPI-Jan-2024-Hometrack.pdf)', | |
| # # '[preview](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/covid19_ie.pdf)', | |
| # # '[preview](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/global_warming.pdf)', | |
| # # '[preview](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/BEIR.pdf)'], | |
| # # key="input_rad_index") | |
| # with coln_1: | |
| # index_select = st.radio("Choose one index",["UK Housing","Global Warming stats","Covid19 impacts on Ireland"],key="input_rad_index") | |
| # with coln_2: | |
| # st.markdown("<p style='font-size:15px'>Preview file</p>",unsafe_allow_html=True) | |
| # st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/HPI-Jan-2024-Hometrack.pdf)") | |
| # st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/global_warming.pdf)") | |
| # st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/covid19_ie.pdf)") | |
| # #st.write("[:eyes:](https://github.com/aws-samples/AI-search-with-amazon-opensearch-service/blob/b559f82c07dfcca973f457c0a15d6444752553ab/rag/sample_pdfs/BEIR.pdf)") | |
| # st.markdown(""" | |
| # <style> | |
| # [data-testid=column]:nth-of-type(2) [data-testid=stVerticalBlock]{ | |
| # gap: 0rem; | |
| # } | |
| # [data-testid=column]:nth-of-type(1) [data-testid=stVerticalBlock]{ | |
| # gap: 0rem; | |
| # } | |
| # </style> | |
| # """,unsafe_allow_html=True) | |
| # # Initialize boto3 to use the S3 client. | |
| # s3_client = boto3.resource('s3') | |
| # bucket=s3_client.Bucket(s3_bucket_) | |
| # objects = bucket.objects.filter(Prefix="sample_pdfs/") | |
| # urls = [] | |
| # client = boto3.client('s3') | |
| # for obj in objects: | |
| # if obj.key.endswith('.pdf'): | |
| # # Generate the S3 presigned URL | |
| # s3_presigned_url = client.generate_presigned_url( | |
| # ClientMethod='get_object', | |
| # Params={ | |
| # 'Bucket': s3_bucket_, | |
| # 'Key': obj.key | |
| # }, | |
| # ExpiresIn=3600 | |
| # ) | |
| # # Print the created S3 presigned URL | |
| # print(s3_presigned_url) | |
| # urls.append(s3_presigned_url) | |
| # #st.write("["+obj.key.split('/')[1]+"]("+s3_presigned_url+")") | |
| # st.link_button(obj.key.split('/')[1], s3_presigned_url) | |
| # st.subheader(":blue[Your multi-modal documents]") | |
| # pdf_doc_ = st.file_uploader( | |
| # "Upload your PDFs here and click on 'Process'", accept_multiple_files=False) | |
| # pdf_docs = [pdf_doc_] | |
| # if st.button("Process"): | |
| # with st.spinner("Processing"): | |
| # if os.path.isdir(parent_dirname+"/pdfs") == False: | |
| # os.mkdir(parent_dirname+"/pdfs") | |
| # for pdf_doc in pdf_docs: | |
| # print(type(pdf_doc)) | |
| # pdf_doc_name = (pdf_doc.name).replace(" ","_") | |
| # with open(os.path.join(parent_dirname+"/pdfs",pdf_doc_name),"wb") as f: | |
| # f.write(pdf_doc.getbuffer()) | |
| # request_ = { "bucket": s3_bucket_,"key": pdf_doc_name} | |
| # # if(st.session_state.input_copali_rerank): | |
| # # copali.process_doc(request_) | |
| # # else: | |
| # rag_DocumentLoader.load_docs(request_) | |
| # print('lambda done') | |
| # st.success('you can start searching on your PDF') | |
| # ############## haystach demo temporary addition ############ | |
| # # st.subheader(":blue[Multimodality]") | |
| # # colu1,colu2 = st.columns([50,50]) | |
| # # with colu1: | |
| # # in_images = st.toggle('Images', key = 'in_images', disabled = False) | |
| # # with colu2: | |
| # # in_tables = st.toggle('Tables', key = 'in_tables', disabled = False) | |
| # # if(in_tables): | |
| # # st.session_state.input_table_with_sql = True | |
| # # else: | |
| # # st.session_state.input_table_with_sql = False | |
| # ############## haystach demo temporary addition ############ | |
| # if(pdf_doc_ is None or pdf_doc_ == ""): | |
| # if(index_select == "Global Warming stats"): | |
| # st.session_state.input_index = "globalwarmingnew" | |
| # if(index_select == "Covid19 impacts on Ireland"): | |
| # st.session_state.input_index = "covid19ie"#"choosetheknnalgorithmforyourbillionscaleusecasewithopensearchawsbigdatablog" | |
| # if(index_select == "BEIR"): | |
| # st.session_state.input_index = "2104" | |
| # if(index_select == "UK Housing"): | |
| # st.session_state.input_index = "hpijan2024hometrack" | |
| # # if(in_images == True and in_tables == True): | |
| # # st.session_state.input_index = "hpijan2024hometrack" | |
| # # else: | |
| # # if(in_images == True and in_tables == False): | |
| # # st.session_state.input_index = "hpijan2024hometrackno_table" | |
| # # else: | |
| # # if(in_images == False and in_tables == True): | |
| # # st.session_state.input_index = "hpijan2024hometrackno_images" | |
| # # else: | |
| # # st.session_state.input_index = "hpijan2024hometrack_no_img_no_table" | |
| # # if(in_images): | |
| # # st.session_state.input_include_images = True | |
| # # else: | |
| # # st.session_state.input_include_images = False | |
| # # if(in_tables): | |
| # # st.session_state.input_include_tables = True | |
| # # else: | |
| # # st.session_state.input_include_tables = False | |
| # custom_index = st.text_input("If uploaded the file already, enter the original file name", value = "") | |
| # if(custom_index!=""): | |
| # st.session_state.input_index = re.sub('[^A-Za-z0-9]+', '', (custom_index.lower().replace(".pdf","").split("/")[-1].split(".")[0]).lower()) | |
| # st.subheader(":blue[Retriever]") | |
| # search_type = st.multiselect('Select the Retriever(s)', | |
| # ['Keyword Search', | |
| # 'Vector Search', | |
| # 'Sparse Search', | |
| # ], | |
| # ['Sparse Search'], | |
| # key = 'input_rag_searchType', | |
| # help = "Select the type of Search, adding more than one search type will activate hybrid search"#\n1. Conversational Search (Recommended) - This will include both the OpenSearch and LLM in the retrieval pipeline \n (note: This will put opensearch response as context to LLM to answer) \n2. OpenSearch vector search - This will put only OpenSearch's vector search in the pipeline, \n(Warning: this will lead to unformatted results )\n3. LLM Text Generation - This will include only LLM in the pipeline, \n(Warning: This will give hallucinated and out of context answers)" | |
| # ) | |
| # re_rank = st.checkbox('Re-rank results', key = 'input_re_rank', disabled = False, value = True, help = "Checking this box will re-rank the results using a cross-encoder model") | |
| # if(re_rank): | |
| # st.session_state.input_is_rerank = True | |
| # else: | |
| # st.session_state.input_is_rerank = False | |
| # # copali_rerank = st.checkbox("Search and Re-rank with Token level vectors",key = 'copali_rerank',help = "Enabling this option uses 'Copali' model's page level image embeddings to retrieve documents and MaxSim to re-rank the pages.\n\n Hugging Face Model: https://huggingface.co/vidore/colpali") | |
| # # if(copali_rerank): | |
| # # st.session_state.input_copali_rerank = True | |
| # # else: | |
| # # st.session_state.input_copali_rerank = False | |