ultpixgen / app.py
openfree's picture
Update app.py
82c44f1 verified
import os
import subprocess
import sys
import importlib.util
import time
# Set environment variables
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "1"
os.environ["TRANSFORMERS_COMPILER_DISABLED"] = "1"
# Function to install required packages
def install_required_packages():
required_packages = [
"warmup_scheduler",
"torchtools"
]
github_repos = {
"warmup_scheduler": "git+https://github.com/ildoonet/pytorch-gradual-warmup-lr.git",
"torchtools": "git+https://github.com/pabloppp/pytorch-tools.git"
}
missing_packages = []
# First check which packages need to be installed
for package in required_packages:
if importlib.util.find_spec(package) is None:
missing_packages.append(package)
print(f"{package} needs to be installed")
# Install missing packages
for package in missing_packages:
print(f"Installing {package}...")
try:
if package in github_repos:
subprocess.check_call([
sys.executable, "-m", "pip", "install", github_repos[package]
])
else:
subprocess.check_call([
sys.executable, "-m", "pip", "install", package
])
print(f"{package} installed successfully")
# Wait a moment to ensure the package is available for import
time.sleep(1)
except subprocess.CalledProcessError as e:
print(f"Failed to install {package}: {e}")
# If there were any packages installed, try to force a refresh of sys.modules
if missing_packages:
print("Refreshing Python module cache...")
for package in missing_packages:
if package in sys.modules:
del sys.modules[package]
# Create patches for missing modules if they can't be installed
def create_module_patches():
# Create a patch for torchtools.transforms if it doesn't exist
if importlib.util.find_spec("torchtools") is None or importlib.util.find_spec("torchtools.transforms") is None:
print("Creating patch for torchtools.transforms...")
# Create the directory structure
os.makedirs("torchtools/transforms", exist_ok=True)
# Create __init__.py files
with open("torchtools/__init__.py", "w") as f:
f.write("# Patch for torchtools\n")
# Create a simplified SmartCrop class
with open("torchtools/transforms/__init__.py", "w") as f:
f.write("""# Patch for torchtools.transforms
import torch
import torch.nn.functional as F
class SmartCrop:
def __init__(self, size=None, scale=None, preserve_aspect_ratio=True):
self.size = size
self.scale = scale
self.preserve_aspect_ratio = preserve_aspect_ratio
def __call__(self, image):
# Basic placeholder implementation that resizes the image
# For actual smart cropping, a more complex implementation would be needed
if self.size is not None:
return F.interpolate(image.unsqueeze(0), size=self.size, mode='bilinear', align_corners=False).squeeze(0)
elif self.scale is not None:
h, w = image.shape[-2:]
new_h, new_w = int(h * self.scale), int(w * self.scale)
return F.interpolate(image.unsqueeze(0), size=(new_h, new_w), mode='bilinear', align_corners=False).squeeze(0)
return image
""")
# Add the patch directory to the system path
sys.path.insert(0, os.path.abspath('./'))
print("Torchtools patch created successfully")
# Install required packages
print("Checking and installing required packages...")
install_required_packages()
# Create patch modules for any missing dependencies
print("Creating patches for any missing modules...")
create_module_patches()
# Give a moment for the system to register newly installed packages
time.sleep(2)
# Now continue with the imports
print("Importing the required modules...")
import yaml
import torch
sys.path.append(os.path.abspath('./'))
# Try importing the modules
try:
from inference.utils import *
from train import WurstCoreB
from gdf import DDPMSampler
from train import WurstCore_t2i as WurstCoreC
print("Successfully imported all required modules!")
except ImportError as e:
print(f"Warning: Import error: {e}")
print("Continuing with the application setup...")
import numpy as np
import random
import argparse
import gradio as gr
import spaces
from huggingface_hub import hf_hub_url
from huggingface_hub import hf_hub_download
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--height', type=int, default=2560, help='image height')
parser.add_argument('--width', type=int, default=5120, help='image width')
parser.add_argument('--seed', type=int, default=123, help='random seed')
parser.add_argument('--dtype', type=str, default='bf16', help='if bf16 does not work, change it to float32')
parser.add_argument('--config_c', type=str,
default='configs/training/t2i.yaml', help='config file for stage c, latent generation')
parser.add_argument('--config_b', type=str,
default='configs/inference/stage_b_1b.yaml', help='config file for stage b, latent decoding')
parser.add_argument('--prompt', type=str,
default='A photo-realistic image of a west highland white terrier in the garden, high quality, detail rich, 8K', help='text prompt')
parser.add_argument('--num_image', type=int, default=1, help='how many images generated')
parser.add_argument('--output_dir', type=str, default='figures/output_results/', help='output directory for generated image')
parser.add_argument('--stage_a_tiled', action='store_true', help='whether or not to use tiled decoding for stage a to save memory')
parser.add_argument('--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added parameter of UltraPixel')
args = parser.parse_args()
return args
def clear_image():
return None
def load_message(height, width, seed, prompt, args, stage_a_tiled):
args.height = height
args.width = width
args.seed = seed
args.prompt = prompt + ' rich detail, 4k, high quality'
args.stage_a_tiled = stage_a_tiled
return args
@spaces.GPU(duration=120)
def get_image(height, width, seed, prompt, cfg, timesteps, stage_a_tiled):
global args
args = load_message(height, width, seed, prompt, args, stage_a_tiled)
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float
captions = [args.prompt] * args.num_image
height, width = args.height, args.width
batch_size = 1
height_lr, width_lr = get_target_lr_size(height / width, std_size=32)
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size)
# Stage C Parameters
extras.sampling_configs['cfg'] = 4
extras.sampling_configs['shift'] = 1
extras.sampling_configs['timesteps'] = 20
extras.sampling_configs['t_start'] = 1.0
extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf)
# Stage B Parameters
extras_b.sampling_configs['cfg'] = 1.1
extras_b.sampling_configs['shift'] = 1
extras_b.sampling_configs['timesteps'] = 10
extras_b.sampling_configs['t_start'] = 1.0
for _, caption in enumerate(captions):
batch = {'captions': [caption] * batch_size}
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
with torch.no_grad():
models.generator.cuda()
print('STAGE C GENERATION***************************')
with torch.cuda.amp.autocast(dtype=dtype):
sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device)
models.generator.cpu()
torch.cuda.empty_cache()
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
conditions_b['effnet'] = sampled_c
unconditions_b['effnet'] = torch.zeros_like(sampled_c)
print('STAGE B + A DECODING***************************')
with torch.cuda.amp.autocast(dtype=dtype):
sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled)
torch.cuda.empty_cache()
imgs = show_images(sampled)
return imgs[0]
css = """
footer {
visibility: hidden;
}
/* Main container styling */
#col-container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
background-color: #f8f9fa;
border-radius: 15px;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
}
/* Header styling */
h1 {
text-align: center;
color: #ff6b00;
font-size: 2.5rem;
margin-bottom: 20px;
font-weight: 700;
text-shadow: 1px 1px 2px rgba(0,0,0,0.1);
}
/* Button styling */
button.primary {
background-color: #ff6b00 !important;
color: white !important;
border: none !important;
border-radius: 8px !important;
padding: 10px 20px !important;
font-weight: 600 !important;
transition: all 0.3s ease !important;
}
button.primary:hover {
background-color: #e55f00 !important;
transform: translateY(-2px);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2) !important;
}
/* Input field styling */
input[type="text"] {
border-radius: 8px !important;
border: 2px solid #ddd !important;
padding: 12px !important;
font-size: 1rem !important;
transition: all 0.3s ease !important;
}
input[type="text"]:focus {
border-color: #ff6b00 !important;
box-shadow: 0 0 0 3px rgba(255, 107, 0, 0.2) !important;
}
/* Output image container */
.output-image {
border-radius: 12px;
overflow: hidden;
box-shadow: 0 8px 20px rgba(0, 0, 0, 0.15);
margin: 20px 0;
transition: all 0.3s ease;
}
.output-image:hover {
transform: scale(1.02);
}
/* Accordion styling */
.accordion {
border-radius: 10px !important;
overflow: hidden !important;
margin: 15px 0 !important;
border: 1px solid #eaeaea !important;
}
/* Example gallery */
.examples-gallery {
display: grid;
grid-template-columns: repeat(auto-fill, minmax(300px, 1fr));
gap: 15px;
margin-top: 20px;
}
.example-item {
background-color: white;
border-radius: 10px;
padding: 10px;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
transition: all 0.3s ease;
}
.example-item:hover {
transform: translateY(-5px);
box-shadow: 0 5px 15px rgba(0, 0, 0, 0.2);
}
/* Loading animation */
@keyframes pulse {
0% { opacity: 0.6; }
50% { opacity: 1; }
100% { opacity: 0.6; }
}
.loading {
animation: pulse 1.5s infinite;
text-align: center;
padding: 20px;
color: #ff6b00;
font-weight: bold;
}
"""
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("<h1>UHD Image Generator (5120×4096)</h1>")
with gr.Group():
with gr.Row():
with gr.Column(scale=5):
prompt = gr.Textbox(
label="Text Prompt",
max_lines=2,
placeholder="Enter your prompt (e.g., 'A majestic mountain landscape with snow')",
elem_id="prompt-input"
)
with gr.Column(scale=1):
generate_button = gr.Button("Generate Image", variant="primary", elem_id="generate-btn")
clear_button = gr.Button("Clear", elem_id="clear-btn")
# Loading indicator
with gr.Row(visible=False) as loading_indicator:
gr.Markdown('<div class="loading">Generating your ultra high resolution image... This may take a minute...</div>')
# Output image with nicer styling
output_img = gr.Image(label="Generated Image", elem_classes="output-image")
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
with gr.Column():
seed = gr.Number(
label="Random Seed",
value=123,
step=1,
minimum=0,
)
cfg = gr.Slider(
label="CFG Scale (Creativity vs. Prompt Adherence)",
minimum=3,
maximum=10,
step=0.1,
value=4
)
with gr.Column():
with gr.Row():
width = gr.Slider(
label="Width",
minimum=1536,
maximum=5120,
step=32,
value=4096
)
height = gr.Slider(
label="Height",
minimum=1536,
maximum=4096,
step=32,
value=2304
)
timesteps = gr.Slider(
label="Timesteps (Quality vs. Speed)",
minimum=10,
maximum=50,
step=1,
value=20
)
stage_a_tiled = gr.Checkbox(
label="Use Tiled Decoding (Lower Memory Usage)",
value=False
)
# Aspect ratio presets
with gr.Row():
gr.Markdown("### Quick Aspect Ratio Presets")
with gr.Row():
preset_landscape = gr.Button("Landscape (16:9)", size="sm")
preset_portrait = gr.Button("Portrait (9:16)", size="sm")
preset_square = gr.Button("Square (1:1)", size="sm")
preset_ultrawide = gr.Button("Ultrawide (21:9)", size="sm")
# Examples with better organization
gr.Markdown("### Example Prompts")
with gr.Row():
example_tabs = gr.Tabs([
gr.TabItem("Nature", gr.Examples(
examples=[
"A detailed view of a blooming magnolia tree, with large, white flowers and dark green leaves, set against a clear blue sky.",
"A majestic view of snow-covered mountains with a calm lake against a blue sky background",
],
inputs=[prompt],
outputs=[output_img],
)),
gr.TabItem("Animals", gr.Examples(
examples=[
"A crocodile wearing a sweater",
"A cute golden retriever puppy chasing a red ball on a green lawn",
],
inputs=[prompt],
outputs=[output_img],
)),
gr.TabItem("Anime", gr.Examples(
examples=[
"A vibrant anime scene of a young girl with long, flowing pink hair, big sparkling blue eyes, and a school uniform, standing under a cherry blossom tree with petals falling around her.",
],
inputs=[prompt],
outputs=[output_img],
)),
gr.TabItem("Architecture", gr.Examples(
examples=[
"A cozy, rustic log cabin nestled in a snow-covered forest, with smoke rising from the stone chimney, warm lights glowing from the windows, and a path of footprints leading to the front door.",
],
inputs=[prompt],
outputs=[output_img],
)),
])
# Function to set aspect ratio presets
def set_landscape():
return 5120, 2880
def set_portrait():
return 2880, 4096
def set_square():
return 3584, 3584
def set_ultrawide():
return 5120, 2160
# Connect buttons to functions
preset_landscape.click(set_landscape, outputs=[width, height])
preset_portrait.click(set_portrait, outputs=[width, height])
preset_square.click(set_square, outputs=[width, height])
preset_ultrawide.click(set_ultrawide, outputs=[width, height])
# Connect events
generate_button.click(
lambda: gr.update(visible=True),
outputs=[loading_indicator]
).then(
get_image,
inputs=[height, width, seed, prompt, cfg, timesteps, stage_a_tiled],
outputs=[output_img]
).then(
lambda: gr.update(visible=False),
outputs=[loading_indicator]
)
clear_button.click(clear_image, inputs=[], outputs=[output_img])
def download_with_wget(url, save_path):
try:
subprocess.run(['wget', url, '-O', save_path], check=True)
print(f"Downloaded to {save_path}")
except subprocess.CalledProcessError as e:
print(f"Error downloading file: {e}")
def download_model():
urls = [
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_a.safetensors',
'https://huggingface.co/stabilityai/StableWurst/resolve/main/previewer.safetensors',
'https://huggingface.co/stabilityai/StableWurst/resolve/main/effnet_encoder.safetensors',
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_b_lite_bf16.safetensors',
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_c_bf16.safetensors',
]
for file_url in urls:
hf_hub_download(repo_id="stabilityai/stable-cascade", filename=file_url.split('/')[-1], local_dir='models')
hf_hub_download(repo_id="roubaofeipi/UltraPixel", filename='ultrapixel_t2i.safetensors', local_dir='models')
if __name__ == "__main__":
args = parse_args()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
download_model()
config_file = args.config_c
with open(config_file, "r", encoding="utf-8") as file:
loaded_config = yaml.safe_load(file)
core = WurstCoreC(config_dict=loaded_config, device=device, training=False)
# SETUP STAGE B
config_file_b = args.config_b
with open(config_file_b, "r", encoding="utf-8") as file:
config_file_b = yaml.safe_load(file)
core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
extras = core.setup_extras_pre()
models = core.setup_models(extras)
models.generator.eval().requires_grad_(False)
print("STAGE C READY")
extras_b = core_b.setup_extras_pre()
models_b = core_b.setup_models(extras_b, skip_clip=True)
models_b = WurstCoreB.Models(
**{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
)
models_b.generator.bfloat16().eval().requires_grad_(False)
print("STAGE B READY")
pretrained_path = args.pretrained_path
sdd = torch.load(pretrained_path, map_location='cpu')
collect_sd = {}
for k, v in sdd.items():
collect_sd[k[7:]] = v
models.train_norm.load_state_dict(collect_sd)
models.generator.eval()
models.train_norm.eval()
demo.launch(debug=True, share=True)