import gradio as gr import torch import os # Load the model (dummy function for demonstration) def load_model(encoder_path, decoder_path): if not os.path.exists(encoder_path) or not os.path.exists(decoder_path): raise FileNotFoundError("Model files not found. Please check the paths.") # Simulate loading a model return "Model loaded successfully!" # Inference function (dummy function for demonstration) def infer(input_data, encoder_path, decoder_path): try: # Load model load_model(encoder_path, decoder_path) # Simulate inference return f"Inference completed on input: {input_data}" except Exception as e: return str(e) # Gradio interface with gr.Blocks() as demo: gr.Markdown("# Galileo Remote Sensing Model Inference") gr.Markdown("This app allows you to perform inference using the Galileo pretrained models.") encoder_path = gr.Textbox(label="Encoder Model Path", placeholder="Path to encoder.pt") decoder_path = gr.Textbox(label="Decoder Model Path", placeholder="Path to decoder.pt") input_data = gr.Textbox(label="Input Data", placeholder="Enter input data for inference") output = gr.Textbox(label="Output") submit_btn = gr.Button("Run Inference") submit_btn.click(infer, inputs=[input_data, encoder_path, decoder_path], outputs=output) # Launch the app if __name__ == "__main__": demo.launch()